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ON THE MODULI STACK OF COMMUTATIVE, 1-PARAMETER

FORMAL LIE GROUPS

BRIAN D. SMITHLING

Abstract. We commence a general algebro-geometric study of the moduli
stack of commutative, 1-parameter formal Lie groups. We emphasize the pro-
algebraic structure of this stack: it is the inverse limit, over varying n, of
moduli stacks of n-buds, and these latter stacks are algebraic. Our main
results pertain to various aspects of the height stratification relative to fixed
prime p on the stacks of buds and formal Lie groups.

Introduction

The aim of this paper is to explicate some of the basic algebraic geometry of the
moduli stack of commutative, 1-parameter formal Lie groups. Formal group laws
have received extensive study in the mathematical literature for well over 50 years.
Their applications cut across a wide swath of mathematics; Hazewinkel’s massive
treatise [Ha] of almost 30 years ago already counted over 500 citations. We shall
make no attempt to survey the vast literature produced since then. But we do wish
to signal one area of mathematics in which the moduli stack of formal groups has
appeared in an explicit and important way: namely, stable homotopy theory.

Formal group laws enter into topology in the study of generalized cohomology
theories: to any even, periodic cohomology theory on the category of topological
spaces, one may associate a formal group law in a way canonical up to choice of
coordinate; see, for example, Lurie’s survey article [Lur]. In [Q], Quillen observed
that the formal group law associated to complex cobordism MU is universal. In
fact, the affine schemes SpecMU∗ and SpecMU∗MU admit a natural internal
groupoid structure

(∗) SpecMU∗MU
//
// SpecMU∗

which represents the functor

(Affine schemes)opp // Groupoids

SpecR � //

{
formal group laws and

strict isomorphisms over R

}
.

Thus the stack of formal groups arises naturally in topology.
In the 1970’s, Morava began to emphasize the role of group laws of given height,

and in particular the Morava stabilizer groups, in stable homotopy theory, and he
advocated for the importation of algebraic geometry into the subject as a means
to gain conceptual insight. The notion of height plays a fundamental role in homo-
topy theory’s so-called chromatic picture; see Ravenel’s important reference [R1]
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for details. More recently, owing much to the influence and insight of Hopkins,
topologists have come to understand that a great deal of the chromatic picture’s
impressive computational architecture is, in some sense, governed by the structure
of the moduli stack of formal Lie groups; see the introduction to [GHMR] for some
discussion.

For example, in [Hop, 21.4], Hopkins interprets the Landweber exact functor
theorem as a statement closely related to flatness of quasi-coherent sheaves on
the stack of formal groups. In [P, 4.8], Pribble obtains a purely stack-theoretic
analog of the chromatic convergence theorem of Hopkins-Ravenel [R2, §8.6]. In
[N, 26], Naumann gives a satisfying algebro-geometric explanation of Hovey’s and
Strickland’s result [HS, 4.2] that for any two Landweber-exact BP∗-algebras R and
S of the same height1, the comodule categories of the Hopf algebroids

(R,R⊗BP∗
BP∗BP ⊗BP∗

R) and (S, S ⊗BP∗
BP∗BP ⊗BP∗

S)

are equivalent: namely, he shows that the underlying stacks are equivalent. Many
important change of rings theorems in stable homotopy theory can be seen as arising
in this way.

Despite the apparent importance and utility of the moduli stack of formal Lie
groups in homotopy theory (to say nothing of whatever applications it may have
in other branches of mathematics), surprisingly little foundational material on this
stack has yet appeared in the mathematical literature. Our intent in this paper is
to take some of the first steps towards filling this gap. That said, let us hasten to
add that many things we shall discuss have already been treated elsewhere in one
form or another. Notably, [N, §6] contains a quick account of some of the basic
algebro-geometric moduli theory of formal groups: in particular, Naumann gives an
algebro-geometric definition of formal groups, shows that they form an fpqc-stack,
and gives an intrinsic description of the stack associated to (∗) as the stack of formal
groups with trivialized canonical bundle. The height stratification is defined and
plays a prominent role in [P, §4.4]. Hopkins has covered a considerable amount of
moduli theory in [Hop] and in other courses at MIT. And there have been many
papers — let us signal especially [L] — devoted to classification of formal group
laws ; it is this work, of course, on which ours shall ultimately rest.

The essential feature of this paper is, perhaps then, its scope. We have tried to
develop the moduli theory largely from the ground up, beginning from the foun-
dations of the classical formal group law literature. Although the topologists have
emerged as the primary consumers of the theory, let us now extend our apologies
to them: we have aproached the subject as a pure piece of algebraic geometry, with
essentially no regard for considerations arising in topology aside from a few remarks
in (4.3.6). For a much more comprehensive account of the moduli stack of formal
Lie groups and its relation to stable homotopy theory, we refer to the forthcoming
[Go2].

Let us now discuss the main contents of this paper.
Section 1 serves chiefly to collect terminology surrounding the various objects at

play. Following, for example, [G,Me], we shall refer to the algebro-geometric version
of a formal group law as a “formal Lie group”, as opposed to just “formal group”.
Though the “Lie” is now less commonly used than in earlier treatments of the

1This notion of height is closely related to, but in some sense is not completely compatible
with, the notion of height we use when speaking of the height stratification; see (4.3.6).
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subject, we feel that “formal group” should be reserved for any group object arising
in a formal-geometric context. Our choice of terminology (re)emphasizes that the
objects we study are the algebro-geometric analog of an infinitesimal neighborhood
of the identity of a (1-dimensional) Lie group; see (1.2.1) and (1.3.1).

In §2 we address the first properties of the stack of formal Lie groups FL G
and of the related stacks we consider. Unfortunately, FL G is not algebraic in the
sense traditional in algebraic geometry [LMB, 4.1]: for example, its diagonal is not
of finite type [LMB, 4.2]. One remedy for this defect, due to Hopkins and followed
in [Go1, 1.8; P, 3.15; N, 6], is the following. Let Λ denote the Lazard ring. Then
the universal formal group law specifies a map

(∗∗) Spec Λ −→ FL G

which is at least surjective, flat, and affine (it is not an honest presentation because
it is not of finite type). So one simply redefines the notion of algebraic stack to
mean an “affine-ized” version of the usual one, using flat covers, so that (∗∗) is a
presentation and FL G is algebraic. See [Hol] for an axiomatization of the idea.

This modified definition carries several advantages. One is that a considerable
amount of algebraic geometry may still be done “as usual”on such stacks. Amongst
examples of import to the topologists, we note that there are satisfactory notions
of closed substack, quasi-coherent sheaf, etc. Another advantage is that the 2-
category of Hopf algebroids becomes antiequivalent to the 2-category of algebraic
stacks equipped with a presentation, and the category of comodules for a given
Hopf algebroid becomes equivalent to the category of quasi-coherent sheaves on the
associated stack. Hence a useful link is forged to homotopy theory.

On the other hand, the modified definition is ultimately awkward from the point
of view of geometry: many examples of objects that ought to be algebraic are
not2, including even all non-quasi-compact schemes. We shall view the modified
definition as unsuitable. But we are still left with the problem of finding a good
setting in which to regard FL G as a geometric object. One possibility is to again
attempt to weaken the notion of algebraic stack, starting, say, by requiring our
presentations only to be fpqc coverings by schemes. Or, at least in the case of
FL G , we could get by with presentations that are a bit more specialized; see
[Go1, 1.2, 1.13] for some musings on this point. A satisfactory approach along
these lines would certainly be highly desirable. But many phenomena in algebraic
geometry are only well understood with certain finiteness hypotheses in place, and
we believe that such an approach is likely to present some untoward foundational
issues, at least weighed against the immediate aims of this paper. So we shall take
another tack.

We shall continue to understand algebraic stack in the traditional sense, as in
[LMB]. Then, indeed, FL G is not algebraic. But in some sense it is not far from
algebraic. Namely, we may naturally describe it as a pro-algebraic stack. We do so
by considering the algebro-geometric classification of what are classically known as
n-bud laws (1.1.2). These were introduced in Lazard’s seminal paper [L]; informally,
they are just truncated formal group laws. The moduli stack Bn of n-buds is a
perfectly good algebraic stack (2.3.2), and, quite as a formal group law is a “limit”

2A phenomenon already present in examples of interest to homotopy theorists, as noted in
[Go1, footnote 5].
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of n-bud laws, we obtain the stack of formal Lie groups as the “limit” of the stacks
Bn (2.6.8).

In §§3 and 4 we turn to the essential feature of the geometry of the stacks Bn

and FL G , respectively, namely the height stratification relative to a fixed prime
p. These sections form the core of the paper. The height stratification on FL G
consists of an infinite descending chain of closed substacks

FL G = FL G≥0 ! FL G≥1 ! · · · ,

and, for each n, the height stratification on Bn consists of a finite descending chain
of closed substacks

Bn = B≥0
n ! B≥1

n ! · · · .

As n varies, the stratifications on Bn are compatible in a suitable sense, and their
“limit” recovers the stratification on FL G (4.2.2).

One of our main results in the following.

Theorem (3.5.7). Bn is smooth over SpecZ of relative dimension −1 at every
point, and, when it is defined, B≥h

n is smooth over SpecFp of relative dimension
−h at every point.

We emphasize that the theorem asserts not only that the locally closed strata are
smooth, but that the closed subschemes defining the stratification are themselves
smooth. Hence each stratum has smooth closure.

Much of our subsequent effort is devoted to studying the strata FL G h ⊂ FL G
and Bh

n ⊂ Bn of height h formal Lie groups and n-buds, respecitvely. It is a classical
result of Lazard [L, Théorème IV] that over a separably closed field of characteristic
p, formal group laws are classified up to isomorphism by their height. We obtain
a generalization as follows. Let H = Hh be a “Honda” formal group law of height
h defined over Fp; see (3.1.16). Then for any Fp-scheme S, we may view H as a
group law over Γ(S,OS), and we define the functor Aut(H) : S 7→ AutΓ(S,OS)(H).

Theorem (4.3.8). FL G h is equivalent to the classifying stack B
(
Aut(H)

)
for

the fpqc topology.

There is a version of the theorem when working with the stack FL G h
tr of formal

Lie groups of height h with trivialized canonical bundle. One has an exact sequence

1 −→ Autstr(H) −→ Aut(H) −→ Gm,

where Autstr(H) is the sub-group functor of strict automorphisms of H . Then
one obtains FL G h

tr ≈ Aut(H)\Gm. Of course, here Gm acts naturally on the
right-hand side; the action appears on the left-hand side as Gm’s natural action on
trivializations, and this action realizes the forgetful functor FL G h

tr → FL G h as a
Gm-torsor. We note that when K is a field containing Fph , Aut(H)(K) is precisely
the hth Morava stabilizer group studied in homotopy theory.

There is also a version of (4.3.8) for buds. Let H(n) denote the n-bud law
obtained from H by discarding terms of degree ≥ n+ 1, and let Aut(H(n)) denote
the functor sending each Fp-scheme S 7→ AutΓ(S,OS)(H

(n)).

Theorem (3.6.8). When it is defined, Bh
n is equivalent to the classifying stack

B
(
Aut(H(n))

)
for the finite étale topology [SGA3I, IV 6.3].
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The results (3.6.8) and (4.3.8) accord the groups Aut(H(n)) and Aut(H) impor-
tant places in the theory. We investigate their structure in the following way. For
each n, there is a natural filtration of normal subgroups

Aut(H(n)) =: A H(n)

0 ⊃ A H(n)

1 ⊃ · · · ⊃ A H(n)

n−1 ⊃ A H(n)

n := 1

and an infinite filtration of normal subgroups

Aut(H) := A H
0 ⊃ A H

1 ⊃ A H
2 ⊃ · · · ;

see (3.7.2) and (4.4.4), respectively. In the case of Aut(H), the A H
• -topology

recovers the usual topology on the Morava stabilizer group.

We calculate the successive quotients of the A H(n)

• - and A H
• -filtrations as follows.

For the A H(n)

• -quotients, let l be the nonnegative integer such that pl ≤ n < pl+1,
and assume h ≤ l.

Theorem (3.7.3, 4.4.7). There are natural identifications of presheaves on (Sch)/Fp

A H(n)

i /A H(n)

i+1
∼=





µph−1, i = 0;

G
Frph

a , i = p− 1, p2 − 1, . . . , pl−h − 1;

Ga, i = pl−h+1 − 1, pl−h+2 − 1, . . . , pl − 1;

0, otherwise,

and

A H
i /A H

i+1
∼=





µph−1, i = 0;

G
Frph

a , i = p− 1, p2 − 1, p3 − 1, . . . ;

0, otherwise.

Here µph−1 ⊂ Gm is the sub-group scheme of (ph − 1)th roots of unity, and

G
Frph

a ⊂ Ga is the sub-group scheme of fixed points for the phth-power Frobenius
operator. It follows that Aut(H(n)) is a smooth group scheme over Fp of dimension
h (3.7.4).

In addition to (4.3.8), we obtain another description of FL G h via a classical
theorem of Dieudonné [D, Théorème 3] and Lubin [Lub, 5.1.3], the full details of
which we shall not recall here. Very roughly, their theorem characterizes AutF

ph
(H)

as the profinite group G of units in a certain p-adic division algebra; see (4.4.10)
for a precise formulation.

Theorem (4.6.2). There is an equivalence of stacks over Fph,

FL G h ×SpecF
ph

SpecFph ≈ lim←−B(G/N),

where the limit is taken over all open normal subgroups N of G.

The theorem is really a corollary of Dieudonné’s and Lubin’s theorem and of
(4.6.1), where we show that FL G h is a limit of certain classifying stacks of finite
étale (but nonconstant) groups over Fp. These groups all become constant after
base change to Fph .

In §5 we describe some aspects of the stacks FL G and Bn related to separat-
edness and properness.

Theorem (5.1). Bn is universally closed over SpecZ, and, when it is defined,
B≥h

n is universally closed over SpecFp.
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The stacks Bn and B≥h
n fail to be proper because they are not separated; see

(5.2). The failure of separatedness prevents us from concluding in a formal way
that FL G and FL G≥h also satisfy the valuative criterion of universal closedness.
Nevertheless, these stacks do satisfy the valuative criterion in many cases; see (5.4).
By contrast, we deduce from our theory that the stratum FL G h does satisfy the
valuative criterion of separatedness.

Theorem (5.5). Let O be a valuation ring and K its field of fractions. Then
FL G h(O)→ FL G h(K) is fully faithful for all h ≥ 1.

When O is a discrete valuation ring, the theorem is a (very) special case of de
Jong’s general theorem [dJ, 1.2] that restriction of p-divisible groups from Spec O
to the generic point SpecK is fully faithful.

We have included an appendix at the end describing some of the basic theory of
limits in 2-categorical contexts; or more precisely, of limits in bicategories.

It is our hope that our study of the moduli stack of formal Lie groups will serve
as a rough model for treating the related stack of p-divisible groups for fixed prime
p. Indeed, this last stack also admits a pro-algebraic description: it is a limit, over
varying n, of algebraic stacks of certain finite locally free group schemes of order
pn.

This paper is a condensed and slightly reorganized version of the author’s Ph.D.
thesis [Sm].
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theory, including sharing with me a draft of [Go2]. Above all, I deeply thank
my Ph.D. advisor, Bob Kottwitz, for his patience and constant encouragement in
overseeing this work.

Notation and conventions. Except where noted otherwise, we adopt the follow-
ing notation and conventions.

We relate objects in a category by writing

= for equal;
∼= for canonically isomorphic;
≃ for isomorphic; and
≈ for equivalent or 2-isomorphic (e.g. for categories, fibered categories,

stacks, etc.).

For simplicty, we often label arrows obtained in a tautological or canonical way by
can
−−→. Context will always make the precise meaning clear.

We write (Sets) for the category of sets, (Gp) for the category of groups, and
(Sch) for the category of schemes. We write Fib(C ) for the 2-category of fibered cat-
egories over a category C . We abbreviate the term “category fibered in groupoids”
by CFG, and we write CFG(C ) for the 2-category of CFG’s over a category C .
By a stack, we mean any fibered category in which morphisms and objects satisfy
descent. In particular, we do not require stacks to be CFG’s, contrary to many
authors’ convention; compare, for example, [LMB, 3.3.1].
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Given an object S in a category C , we write C/S for the overcategory of S-
objects, that is, of objects T equipped with a morphism T → S in C . When
C = (Sch) and S is an affine scheme SpecA, we often write (Sch)/A instead of
(Sch)/S .

Given an object S in a category C , we typically write just S again for both
the presheaf of sets on, and fibered category over, C determined by S, T 7→
HomC (T, S). When clarity demands that the notation distinguish between S and
its associated presheaf or fibered category, we denote the latter two by S.

By default, “sheaf” or “presheaf” means “sheaf of sets” or “presheaf of sets”,
respectively.

When working in a 2-categorical context (for example, the case of fibered cate-
gories and stacks), we say that a diagram of objects and 1-morphisms

A //

��

B

��

C // D

is Cartesian if the two composites A → D are isomorphic, and the choice of an

isomorphism induces an equivalence A
≈
−→ C ×D B.

All rings are commutative with 1. We write k(s) for the residue field at the

point s of a scheme. Given a ring A and an A-module M , we write M̃ for the
quasi-coherent OSpec A-module on SpecA obtained from M .

Given a scheme S, we write Γ(S) for the global sections Γ(S,OS) of the structure
sheaf. In addition, for each integer n ≥ 0 and indeterminates T1, . . . , Tm, we define
the ring

Γn(S;T1, . . . , Tm) := Γ
(
S,OS [T1, . . . , Tm]/(T1, . . . , Tm)n+1

)

∼= Γ(S)[T1, . . . , Tm](T1, . . . , Tm)n+1,

where OS [T1, . . . , Tm]/(T1, . . . , Tm)n+1 is the sheaf on S defined on each open subset
U by

U 7−→ Γ(U,OS)[T1, . . . , Tm]/(T1, . . . , Tm)n+1.

In particular, we have Γ0(S;T1, . . . , Tm) ∼= Γ(S).

1. Definitions

We begin by introducing some of the basic language and notation related to the
objects we study in this paper.

1.1. Review of formal group laws I. Before beginning to study formal group
laws from the point of view of algebraic geometry, it will be convenient to briefly
review some of the foundations of the classical algebraic theory. We will review
aspects of the classical theory related to the notion of height, as well as some
refinements to the material we discuss here, in §3.1. The reader may wish to skip
this section and refer back only as needed.

Let A be a ring.

Definition 1.1.1. A formal Lie group law, or just formal group law, over A is a
power series F (T1, T2) ∈ A[[T1, T2]] in two variables satisfying

(I) (identity) F (T, 0) = F (0, T ) = T ;
(A) (associativity) F

(
F (T1, T2), T3

)
= F

(
T1, F (T2, T3)

)
; and
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(C) (commutativity) F (T1, T2) = F (T2, T1);

here the equalities are of elements in the rings A[[T ]], A[[T1, T2, T3]], and A[[T1, T2]],
respectively. A homomorphism F → G of formal group laws over A is a power series
f(T ) ∈ A[[T ]] with constant term 0 satisfying

(∗) f
(
F (T1, T2)

)
= G

(
f(T1), f(T2)

)

in A[[T1, T2]].

One obtains the notion of a bud law as a “truncated” version of (1.1.1). Let
n ≥ 0.

Definition 1.1.2. An n-bud law over A is an element

F (T1, T2) ∈ A[T1, T2]/(T1, T2)
n+1

satisfying conditions (I), (A), and (C) of (1.1.1) in the rings

A[T ]/(T )n+1, A[T1, T2, T3]/(T1, T2, T3)
n+1, and A[T1, T2]/(T1, T2)

n+1,

respectively. A homomorphism F → G of n-bud laws over A is an element f(T ) ∈
A[T ]/(T )n+1 with constant term 0 satisfying (∗) in the ring A[T1, T2]/(T1, T2)

n+1.

Example 1.1.3. Over any ring,

• the additive law or n-bud is given by F (T1, T2) = T1 + T2; and
• the multiplicative law or n-bud, n ≥ 2, is given by

F (T1, T2) = (1 + T1)(1 + T2)− 1 = T1 + T2 + T1T2.

Remark 1.1.4. We recall that any group law or bud law F over A is automatically
equipped with a unique inverse homomorphism i(T ) = iF (T ) : F → F satisfying
F

(
i(T ), T

)
= F

(
T, i(T )

)
= 0.

Remark 1.1.5. Let F be a group law or bud law over A. Then the axioms endow
the monoid EndA(F ) with a natural (noncommutative) ring structure: multiplica-
tion is composition of power series in the group law case, or of truncated polynomials
in the bud law case, and addition is application of F ; that is, the sum of f(T ) and
g(T ) is F

(
f(T ), g(T )

)
. We denote the sum in EndA(F ) by f+F g to avoid confusion

with usual addition of power series or of truncated polynomials. The unit element
in EndA(F ) is just id(T ) := T .

Remark 1.1.6. It is convenient to now make the following technical, though ob-
vious, remark, which we’ll use in §3.7. Suppose that

f(T ) = anT
n + an+1T

n+1 + · · · and g(T ) = bmT
m + bm+1T

m+1 + · · ·

are endomorphisms of the group law or bud law F . Say n ≤ m. Then since F is of
the form

F (T1, T2) = T1 + T2 + (higher order terms),

we observe that

(f +F g)(T ) = anT
n + an+1T

n+1 + · · ·+ am−1T
m−1

+ (am + bm)Tm + (higher order terms).
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Let ϕ : A → B be any ring homomorphism. If F is a formal group law or bud
law over A, then application of ϕ to the coefficients of F yields a group law or bud
law, respectively, ϕ∗F over B. While it is easy to see that universal group laws
and bud laws exist, Lazard [L] obtained the following remarkable description of the
rings over which these universal laws are defined. Let n ≥ 1.

Theorem 1.1.7 (Lazard). There exists a universal n-bud law Un over the polyno-
mial ring Z[t1, . . . , tn−1] and a universal formal group law U over the polynomial
ring Z[t1, t2, . . . ].

In other words, the rings Z[t1, . . . , tn−1] and Z[t1, t2, . . . , ] corepresent the func-
tors A 7→ {n-bud laws over A} and A 7→ {formal group laws over A}, respectively.
We will recall a refinement of Lazard’s theorem later in (3.1.14).

Proof of (1.1.7). This was first proved, though only implicitly for bud laws, in
[L, Théorèmes II and III and their proofs]. One may also consult [Ha, I 5.3.1, 5.7.3,
5.7.4] ([Ha] refers to buds as “chunks”). �

Remark 1.1.8. The choice of Un and U in the theorem are by no means canonical.
That is, Z[a1, . . . , an−1] and Z[a1, a2, . . . , ] noncanonically corepresent the respec-
tive functors A 7→ {n-bud laws over A} and A 7→ {formal group laws over A}. So
already one sees an advantage in “dividing out” out by the isomorphisms between
the universal laws to obtain more canonical objects, so that no particular choice of
universal law is preferred. Hence one is led to the stacks of formal Lie groups and
of n-buds.

1.2. Formal Lie varieties. There are many (equivalent) “geometric” definitions
of formal Lie groups in the literature. We shall follow [G, Me] in our treatment.
In passing from formal group laws to formal Lie groups, one may take as point of
departure the following observation: to give a formal group law over the ring A is
to give a group structure on the formal scheme Spf A[[T ]] over SpecA with the 0
section as identity; see (1.3.3). In general, a formal Lie group is something modeled
locally by this picture; see (1.3.1). Hence the basic geometry of formal Lie groups
lies in the realm of formal geometry. In this section, we introduce what are, in
some sense, the basic formal-geometric objects underlying the formal Lie groups,
namely the formal Lie varieties.

Let S be a scheme.

Definition 1.2.1. A (pointed, 1-parameter) formal Lie variety over S is a sheaf
X on (Sch)/S for the fppf topology equipped with a section σ : S → X , such that,
Zariski locally on S, there is an isomorphism of pointed sheaves X ≃ Spf OS [[T ]],
where Spf OS [[T ]] is pointed by the 0-section. A morphism of formal Lie varieties
is a morphism of pointed sheaves.

In other words, a (pointed, 1-parameter) formal Lie variety is a pointed formal
scheme over S locally (on S) of the form Spf OS [[T ]].

Remark 1.2.2. More generally, a pointed formal Lie variety (without condition
on the number of parameters) is a pointed sheaf over S Zariski locally of the form
Spf OS [[T1, . . . , Tn]] for some n locally constant on S [G, III 6.7]. A formal Lie
variety (without specified point) is a sheaf over S fpqc locally of the form

Spf OS [[T1, . . . , Tn]]
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for varying n [G, VI 1.3]. Though these generalizations of (1.2.1) are certainly
not without their place, we will have little occasion to consider them here. So, for
simplicity, we shall abuse language and always understand “formal Lie variety” to
mean “pointed, 1-parameter formal Lie variety”, unless explicitly stated otherwise.

Example 1.2.3. The most basic and important example of a formal Lie variety
over any base S is just Spf OS [[T ]] itself, equipped with the 0 section, that is, with
the map specified on algebras OS [[T ]] → OS by T 7→ 0. We denote this example

by ÂS or, when the base is clear from context, by Â. When S is an affine scheme

SpecA, we also denote ÂS by ÂA.

Our notation is nonstandard. It is typical to write Â1
S for the formal line

Spf OS [[T ]] obtained by completing A1
S at the origin. But since our interest is al-

most exclusively in pointed, 1-parameter formal Lie varieties, we shall suppress the

superscript 1 to reduce clutter, and we shall always understand ÂS to be equipped
with the zero section.

Example 1.2.4. More generally, if T is any smooth scheme of relative dimension
1 over S and S → T is a section, then the completion of T along the section is a
formal Lie variety over S.

Remark 1.2.5. One can give a more intrinsic version of the definition of formal
Lie variety: see [G, VI 1.3] or [Me, II 1.1.4]. But (1.2.1) has the advantage of being
reasonably concrete, and it will certainly suffice for our purposes.

1.3. Formal Lie groups. Let S be a scheme.

Definition 1.3.1. A (commutative, 1-parameter) formal Lie group over S is an
fppf sheaf of commutative groups on (Sch)/S such that the underlying pointed sheaf
of sets is a formal Lie variety (1.2.1).

In other words, a formal Lie group is a formal Lie variety (X,σ) made into a
commutative group object in the category of sheaves on (Sch)/S , such that the
given section σ is the identity section.

Remark 1.3.2. One can certainly formulate (1.3.1) without the commutativity
condition. And, analogously to (1.2.2), one may define a formal Lie group in full
generality as an fppf sheaf of (not-necessarily-commutative) groups over S whose
underlying pointed sheaf of sets is a formal Lie variety in the general sense of (1.2.2).
But as before, we shall have no use for the more general notion. So we shall abuse
language and always use “formal Lie group” in the sense stated in (1.3.1).

Example 1.3.3. Consider the formal Lie variety Â over S (1.2.3). To make Â into

a formal Lie group, we must define a multiplication map Â×S Â→ Â. Since

Â×S Â ∼= Spf OS [[T1, T2]],

we may equivalently define a continuous map of OS-algebras

OS [[T1, T2]]←− OS [[T ]].

Any such map is determined by the image F (T1, T2) of T in the global sections

Γ(S)[[T1, T2]]. Then Â becomes a formal Lie group with the 0 section as identity
exactly when F is a formal group law over Γ(S) in the classical sense (1.1.1). Hence,
to give a formal group law is to give a formal Lie group with a choice of coordinate.

We write ÂF = ÂF
S for the group structure on Â obtained from F .
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Example 1.3.4. Let F and G be formal group laws over Γ(S). Then a morphism

of formal Lie varieties f : Â→ Â is a morphism of formal Lie groups f : ÂF → ÂG

exactly when the diagram of maps on global sections

Γ(S)[[T1, T2]] Γ(S)[[T1, T2]]
(f×f)#

oo

Γ(S)[[T ]]

F (T1,T2)

OO

Γ(S)[[T ]]
f#

oo

G(T1,T2)

OO

commutes, that is, when

f#
(
F (T1, T2)

)
= G

(
f#(T1), f

#(T2)
)
.

Hence we recover the classical notion of a group law homomorphism F → G (1.1.1).

Example 1.3.5.

• The additive formal Lie group Ĝa = Ĝa,S over S is ÂF
S for

F (T1, T2) = T1 + T2

the additive group law (1.1.3). Ĝa is the completion of Ga at the identity.

• The multiplicative formal Lie group Ĝm = Ĝm,S over S is ÂF
S for

F (T1, T2) = T1 + T2 + T1T2

the multiplicative group law (1.1.3). Ĝm is the completion of Gm at the
identity.
• If E is an elliptic curve over S, then the completion of E at the identity

is a formal Lie group over S. Note that this furnishes many examples of
formal Lie groups not admitting a global coordinate.
• More generally, completion at the identity of any smooth commutative

group scheme of relative dimension 1 yields a formal Lie group. When S is
Spec of an algebraically closed field, then Ga, Gm, and elliptic curves are
the only such connected group schemes.

At this juncture, we could perfectly well begin to consider the moduli stack of
formal Lie groups. But, as noted in the introduction, it turns out that this stack
is not algebraic. So in the next section, we shall begin laying the groundwork to
study the related moduli problem of classifying n-buds ; this will afford an “algebraic
approximation” to the moduli stack of formal Lie groups, in a sense we make precise
in (2.6.8). We shall return to the moduli stacks of formal Lie varieties and of formal
Lie groups in §2.5 and §2.6, respectively.

1.4. Infinitesimal neighborhoods. Roughly speaking, in algebra, a bud law is a
truncation of a formal group law. In the geometric setting, the role of truncation will
be played by taking infinitesimal neighborhoods. In other words, roughly speaking,
a bud will be an infinitesimal neighborhood of the identity of a formal Lie group.
Hence the basic geometry of buds lies in the realm of infinitesimal geometry. In
this section we introduce some of the basic language surrounding these ideas.

Let us begin by recalling the notion of infinitesimal neighborhood from [G, VI
1.1] or [Me, II 1.01]. Let S be a base scheme, Y and X sheaves on (Sch)/S for some
fixed topology between the fpqc and Zariski topologies, inclusive, and Y →֒ X a
monomorphism. Let n ≥ 0.
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Definition 1.4.1. The nth infinitesimal neighborhood of Y in X is the subsheaf of
X obtained as the sheafification of the subpresheaf of X defined on points by

T 7−→





T → X

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

there exists a commutative diagram

T ′
�

�

//

��

T

��

Y
�

�

// X

for some closed subscheme T ′ of T defined by a
quasi-coherent ideal I ⊂ OT satisfying I n+1 = 0.





.

We denote the nth infinitesimal neighborhood by InfnY (X) or, when Y is clear from
context, by X(n).

Remark 1.4.2. When Y →֒ X is a closed immersion of schemes, say with as-
sociated sheaf of ideals I ⊂ OX , one typically defines Infn

Y (X) to be the closed
subscheme of X whose underlying topological space is the image of Y and whose
structure sheaf is the restriction of OX/I n+1. It is not hard to verify that, in this
situation, this notion of Inf and the notion of (1.4.1) agree; see [Me, II 1.02].

Remark 1.4.3. One verifies at once that Inf is functorial in X and Y : precisely,
any commutative diagram

Y
�

�

//

��

X

��

Y ′
�

�

// X ′,

in which the horizontal arrows are monomorphisms, induces a map Infn
Y (X) →

Infn
Y ′(X ′) for any n.

Remark 1.4.4. Formation of Infn
Y (X) is compatible with base change on S by

[Me, II 1.03].

We will be especially interested in infinitesimal neighborhoods in the case Y = S,
so that X is pointed. In this situation, we have the following definition.

Definition 1.4.5. X is n-infinitesimal (resp., ind-infinitesimal) if the natural ar-
rowX(n) → X (resp., lim−→n

X(n) → X) is an isomorphism. We denote by (n-Inf)(S)

(resp., (∞-Inf)(S)) the category of n-infinitesimal (resp., ind-infinitesimal) sheaves
over S.

Example 1.4.6. The motivation for introducing (1.4.5) is simply that any formal
Lie variety is ind-infinitesimal, and any nth infinitesimal neighborhood of a pointed
sheaf is n-infinitesimal.

Remark 1.4.7. Of course, one has the obvious implications

n-infinitesimal =⇒ m-infinitesimal for m ≥ n =⇒ ind-infinitesimal.

Remark 1.4.8. One verifies at once that the properties of being n-infinitesimal or
ind-infinitesimal are stable under base change. Hence (n-Inf) and (∞-Inf) define
fibered categories over (Sch).
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Remark 1.4.9. As a special case of (1.4.3), the assignment X 7→ X(n) specifies a
functor {

pointed fppf
sheaves on (Sch)/S

}
−→ (n-Inf)(S).

Hence we get a natural “truncation” functor

(∞-Inf)(S) −→ (n-Inf)(S).

We shall return to the topic of truncation a bit more in earnest in §2.4.

Remark 1.4.10. If X and Y are n- and m-infinitesimal, respectively, sheaves over
S, then the product (in the category of pointed sheaves over S) X×S Y is (n+m)-
infinitesimal. Hence a product of ind-infinitesimal sheaves is ind-infinitesimal.

On the other hand, (n-Inf)(S) itself contains finite products: namely, the product
of sheaves X and Y in (n-Inf)(S) is (X ×S Y )(n).

1.5. Germs. In this section we introduce the “truncated” analogs of the formal
Lie varieties, namely the germs ; these will hold the same relation to buds that the
formal Lie varieties hold to formal Lie groups. To define n-germs, we could, so to
speak, just “take the nth infinitesimal neighborhood” of the definition of formal Lie
variety (1.2.1); that is, we could copy (1.2.1) word-for-word, only replacing OS [[T ]]
everywhere with OS [T ]/(T )n+1. Instead, we shall give a somewhat more intrinsic
definition. We shall deduce that our definition amounts to the infinitesimal version
of a formal Lie variety in (1.6.4).

Let n ≥ 0, and let S be a scheme.

Definition 1.5.1. A (pointed, 1-parameter) n-germ over S is a pointed, repre-
sentable, n-infinitesimal (1.4.5) sheaf X over S satisfying

(LF1) if I is the sheaf of ideals on X associated to the given section σ : S → X ,
then each successive quotient σ∗(I i/I i+1) for i = 1, . . . , n is a locally free
OS-module of rank 1.

We often denote n-germs as triples (X,π, σ), where π denotes the structure map
X → S and σ denotes the section.

It is convenient to allow the n = 0 case; then (LF1) is vacuous, and a 0-germ

over S consists just of an isomorphism X
∼
−→ S.

Remark 1.5.2. One could give a fully general definition of n-germs in a way
entirely analogous to (1.2.2). But, just as in (1.2.2), we won’t have occasion to
consider the more general notion. So we shall abuse language and always use “n-
germ” in the sense stated in (1.5.1).

Example 1.5.3. The most basic and important example of an n-germ over S is

just the infinitesimal version of ÂS (1.2.3),

T := TS := Tn,S := Spec OS [T ]/(T )n+1,

equipped with the 0 section. In our discussion of germs, we will often work with
respect to a fixed nonnegative integer n and/or a fixed base S, and, accordingly,
we will often favor the plainer notation T or TS over Tn,S , provided no confusion
seems likely. When S is an affine scheme SpecA, we also denote TS by TA.

Our choice of the letter T is for “trivial”; see (1.6.1).
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Remark 1.5.4. Note that for m ≥ n, we have Â
(n)
S
∼= T

(n)
m,S

∼= Tn,S . More
generally, any truncation of a formal Lie variety or of a germ is a germ.

Remark 1.5.5. Taking i = 1 in the definition (1.5.1), we see that, in particular,
the conormal sheaf associated to σ is a line bundle on S. This line bundle will
play an important role in our later study of the height stratification. We remark in
addition that, since σ is a section of π, the conormal sheaf is canonically isomorphic
to σ∗(Ω1

X/S) [EGAIV4, 17.2.5].

Remark 1.5.6. It is immediate that the morphisms π and σ in (1.5.1) are inverse
homeomorphisms of topological spaces. Hence each sheaf σ∗(I i/I i+1) appearing
in condition (LF1) is canonically isomorphic to π∗(I i/I i+1).

Remark 1.5.7. In the language of [G,Me], we could have defined an n-germ over
S as an object of (n-Inf)(S), representable and smooth to order n along the section
[G, VI 1.2; Me, II 3.1.2], such that the conormal sheaf is a line bundle on S. The
equivalence of this notion with that of our definition (1.5.1), if not immediately
apparent, will be made clear in (1.6.4).

Definition 1.5.8. We define (n-germs)(S) to be the full subcategory of pointed
sheaves on (Sch)/S consisting of the n-germs. We define Gn(S) to be the groupoid
of n-germs and their isomorphisms.

It follows from (1.5.10) below that (n-germs) and Gn define a fibered category
and a CFG, respectively, over (Sch). For the moment, consider the general situation
of a scheme X over S and a quasi-coherent sheaf of ideals I ⊂ OX .

Lemma 1.5.9 (compare [EGAIV4, 16.2.4]). Let i ≥ 1, and suppose I j/I j+1 is
S-flat for 0 ≤ j ≤ i− 1. Then formation of I i is compatible with base change on
S; that is, for any Cartesian square

X ′
p

//

��

X

��

S′ // S,

I ′ := p∗I is naturally identified with a sheaf of ideals in OX′ , and the natural
arrow p∗(I i)→ (I ′)i is an isomorphism.

Proof. Consider the exact sequence

I ⊗i m
−→ OX −→ OX/I

i −→ 0,

where m is the multiplication map. Now, OX/I
i admits a filtration

OX/I
i ⊃ I /I i ⊃ I 2/I i ⊃ · · · ⊃ I i−1/I i ⊃ 0

whose successive quotients are S-flat by hypothesis. Hence OX/I i is S-flat. That
is, m has flat cokernel. Hence formation of the image of m is compatible with base
change. The lemma follows. �

Lemma 1.5.10. Suppose X is an n-germ over S. Then for any base change
S′ → S, S′ ×S X is an n-germ over S′.

Proof. Immediate from the previous lemma, since base change for arbitrary schemes
preserves quotients of quasi-coherent modules and the property of being finite lo-
cally free of given rank. �
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1.6. Trivial germs. Let us begin with the definition.

Definition 1.6.1. The n-germ X over S is trivial if it is isomorphic to TS (1.5.3).

We shall now show that every germ is trivial Zariski locally. As a first step, let
π : X → S be a scheme over S admitting a section σ which is a closed immersion
and a homeomorphism.

Lemma 1.6.2. X is affine over S.

Proof. Apply [SGA3I, VIB 2.9.1], which says that for any morphism of schemes π, if
π is a homeomorphism between the underlying topological spaces, then π is an affine
morphism. Alternatively, we can give a simple direct proof in the present situation
by using that the inverse homeomorphism σ is a closed immersion. Consider an
open affine V in X . Since a closed immersion is an affine morphism, U := σ−1(V )
is affine in S. Then π−1(U) = V is affine. But we can certainly cover S with open
affines of the form U , so we’re done. �

Let us now specialize to the case that (X,π, σ) is an n-germ.

Lemma 1.6.3. Let I ⊂ OX be the sheaf of ideals corresponding to σ. Then the
natural map

(I /I 2)⊗i −→ I i/I i+1

is an isomorphism for 1 ≤ i ≤ n.

Proof. The map is an epimorphism of locally free sheaves of the same rank, hence
an isomorphism. �

Proposition 1.6.4. Zariski locally on S, X is trivial.

Proof. Localizing on S, we may assume by (1.6.2) that S = SpecA, X = SpecB,
the composition

A
σ#

←−− B
π#

←−− A

is idA, and I := ker[B → A] is an ideal such that In+1 = 0 and I/I2 is a free
A-module of rank 1.

Let t generate I/I2 as an A-module and choose any lift t ∈ I. We claim that
the map ϕ : A[T ]/(T )n+1 → B sending T 7→ t is an isomorphism. Indeed, ϕ is
well-defined because t ∈ I and In+1 = 0. Let us consider A[T ]/(T )n+1 as filtered
T -adically, and B as filtered I-adically. Then ϕ is a map of filtered rings. But by
(1.6.3), ϕ induces an isomorphism on associated graded algebras. Hence ϕ is an
isomorphism. �

In light of the proposition, it will be important later to understand the automor-
phisms of TS .

Definition 1.6.5. We define End(Tn) to be the presheaf of monoids on (Sch)

End(Tn) : S 7−→ End(n-germs)(S)(Tn,S)

and Aut(Tn) to be the presheaf of groups on (Sch)

Aut(Tn) : S 7−→ Aut(n-germs)(S)(Tn,S).
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Fix a base scheme S. To give an endomorphism of TS is to give a map of
augmented OS-algebras OS [T ]/(T )n+1 → OS [T ]/(T )n+1; this, in turn, is given by
the image a1T + · · ·+ anT

n of T in Γn(S;T ). The endomorphism of TS is then an
automorphism exactly when a1T + · · · + anT

n is invertible under composition in
Γn(S;T ), that is, when a1 ∈ Γ(S)×. We have shown the following.

Proposition 1.6.6. As set-valued functors, End(Tn) is canonically represented by

SpecZ[a1, a2, . . . , an] = An
Z
,

and Aut(Tn) is canonically represented by the open subscheme

SpecZ[a1, a
−1
1 , a2, . . . , an]

of An
Z
. �

Explicitly, the monoid structure on SpecZ[a1, . . . , an] = An
Z

obtained from the
identification with End(Tn) is given by composition of polynomials a1T+· · ·+anT

n

in the truncated polynomial ring Z[a1, . . . , an][T ]/(T )n+1.

Remark 1.6.7. Aut(Tn) admits a decreasing filtration of closed sub-group schemes

Aut(Tn) =: A Tn

0 ⊃ A Tn

1 ⊃ · · · ⊃ A Tn

n−1 ⊃ A Tn
n := 1

defined on S-valued points by

A Tn

i (S) = {T + ai+1T
i+1 + · · ·+ anT

n | ai+1, . . . , an ∈ Γ(S) }, 1 ≤ i ≤ n− 1.

Said differently, A Tn

i is just the kernel of the homomorphism Aut(Tn)→ Aut(Ti)

induced by the identification T
(i)
n
∼= Ti, 0 ≤ i ≤ n. One verifies at once that the

map on points
T + ai+1T

i+1 + · · ·+ anT
n 7−→ ai+1

specifies an isomorphism of Z-groups

A Tn

i /A Tn

i+1
∼
−→

{
Gm, i = 0;

Ga, 1 ≤ i ≤ n− 1.

We shall return to the A Tn

i ’s in §3.7.

1.7. Buds. We now introduce the infinitesimal versions of the formal Lie groups,
namely the buds ; these are the algebro-geometric analogs of the bud laws. Let S
be a scheme and n ≥ 0.

Definition 1.7.1. A (commutative, 1-parameter) n-bud over S consists of an n-
germ X over S (1.5.1) equipped with a morphism of S-schemes, which we think of
as a multiplication map,

F : (X ×S X)(n) −→ X,

satisfying the constraints

(I) (identity) the section S
σ
−→ X is a left and right identity for F , i.e. both

compositions in the diagram

X
(σπ,idX)

//

(idX ,σπ)

��

(X ×S X)(n)

F

��

(X ×S X)(n) F // X

equal idX ;
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(A) (associativity) F is associative on points of (X ×S X ×S X)(n), i.e. the
restrictions of F×idX and idX×F to (X×SX×SX)(n) yield a commutative
diagram

(X ×S X ×S X)(n)
idX×F

//

F×idX

��

(X ×S X)(n)

F

��

(X ×S X)(n) F // X ;

and
(C) (commutativity) F is commutative, i.e. letting τ : X×SX → X×SX denote

the transposition map (x, y) 7→ (y, x) and restricting τ to (X ×S X)(n), F
is τ -equivariant, i.e. the diagram

(X ×S X)(n) τ //

F ##HH
HH

HH
H

(X ×S X)(n)

F{{ww
ww

ww
w

X

commutes.

Of course, the infinitesimal neighborhoods in the definition are all taken with
respect to the sections induced by σ. It is an immediate consequence of the func-
toriality of Inf that the diagrams in the definition are well defined.

Remark 1.7.2. Heuristically, the multiplication map F in the definition is almost
a commutative monoid scheme structure on X over S, but F is defined only on
points of a certain subfunctor of the product X ×S X . On the other hand, recall
from (1.4.10) that (X ×S X)(n) is the honest product of X with itself in the cate-
gory (n-Inf)(S). Hence n-buds over S are commutative monoids in (n-Inf)(S). In
fact, we’ll verify in §1.8 that the n-buds are precisely the n-germs endowed with a
commutative group structure in (n-Inf)(S).

Remark 1.7.3. Just as we noted for formal Lie groups (1.3.2), one can certainly
consider n-buds on many parameters, or without the commutativity constraint
(C). But as always, we shall only be concerned with the commutative, 1-parameter
case. So we shall always abusively understand “n-bud” in the sense of (1.7.1),
except where explicitly stated otherwise.

Remark 1.7.4. In the trivial case n = 0, we have X
∼
−→ S and F is forced to be

the canonical isomorphism (X ×S X)(0)
∼
−→ X .

Example 1.7.5. Consider the n-germ T over S (1.5.3). Then, quite analogously
to (1.3.3), to give an n-bud structure (T ×S T)(n) → T with the given section as
identity is to give an n-bud law F over Γ(S) in the classical sense (1.1.2). Hence,
to give an n-bud law is to give an n-bud with a choice of coordinate. We write
TF = TF

S for the bud structure on T obtained from F .

Example 1.7.6. Everything in (1.3.5) admits an obvious analog for buds. In
particular, let us signal the following.

• The additive n-bud G
(n)
a = G

(n)
a,S over S is the nth infinitesimal neighbor-

hood of Ga at the identity, that is, the n-bud TF
n,S for

F (T1, T2) = T1 + T2
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the additive bud law (1.1.3).

• The multiplicative n-bud G
(n)
m = G

(n)
m,S over S is the nth infinitesimal neigh-

borhood of Gm at the identity, that is, the n-bud TF
S for

F (T1, T2) = T1 + T2 + T1T2

the multiplicative bud law (1.1.3).

Remark 1.7.7. For F a group law (resp., m-bud law with m ≥ n), let us denote by
F (n) the n-bud law obtained from F by discarding terms of degree≥ n+1. Then we

have (ÂF )(n) ∼= TF (n)

n (resp., (TF
m)(n) ∼= TF (n)

n ). More generally, any truncation of
a formal Lie group or of a bud is a bud, since truncation (∞-Inf)(S)→ (n-Inf)(S)
and (m-Inf)(S)→ (n-Inf)(S), m ≥ n, preserves finite (including empty) products.

There is an obvious notion of morphism of buds.

Definition 1.7.8. A morphism f : X → Y of n-buds over S is a morphism of
monoid objects in (n-Inf)(S), that is, a morphism of the underlying n-germs such
that

(X ×S X)(n)
(f×f)(n)

//

��

(Y ×S Y )(n)

��

X
f

// Y
commutes.

Example 1.7.9. Analogously to (1.3.4), to give a morphism of buds TF
S → TG

S

over S is to give a homomorphism of bud laws F → G (1.1.2).

Definition 1.7.10. We define (n-buds)(S) to be the category of n-buds and bud
morphisms over S. We define Bn(S) to be the groupoid of n-buds and bud isomor-
phisms over S.

Remark 1.7.11. Given an n-bud X over S and a base change f : S′ → S, we
know X ′ := S′ ×S X is at least an n-germ by (1.5.10). But then the base change
of the multiplication map makes X ′ into a bud, since infinitesimal neighborhoods
(1.4.4) and fibered products are compatible with base change. Hence (n-buds) and
Bn define a fibered category and a CFG, respectively, over (Sch).

Note that when X = TF
S , one has X ′ ∼= TF ′

S′ , where F ′ is the bud law over Γ(S′)
obtained by applying f# to the coefficients of F .

1.8. Buds as group objects. Fix a base scheme S. We remarked in (1.7.2) that
n-buds over S are almost commutative monoids in the category of S-schemes, and
are honest commutative monoids in the category (n-Inf)(S) (1.4.5). As promised,
we’ll now see that n-buds are honest group objects in (n-Inf)(S).

Proposition 1.8.1. The n-buds over S are precisely the n-germs over S endowed
with a commutative group structure in (n-Inf)(S). The n-bud morphisms over S
are precisely the homomorphisms of group objects in (n-Inf)(S).

Proof. All we need to show is that every n-bud X is automatically equipped with
an inverse morphism X → X . Since the inverse is unique if it exists, it suffices
to find the inverse locally on S. Hence we may assume X has trivial underlying
germ (1.6.4), so that we may assume X = TF

S for some n-bud law F (T1, T2) ∈
Γn(S;T1, T2) (1.7.5). Now use (1.1.4, 1.7.9). �
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We obtain the following as a formal consequence.

Corollary 1.8.2. For n-buds X and Y over S, the set of bud morphisms X → Y
is naturally an abelian group. Moreover, composition of bud morphisms is bilinear.

�

Explicitly, bud morphisms X → Y are added as elements of Hom(n-Inf)(S)(X,Y )
under the group structure coming from Y . The content of the corollary is that bud
morphisms form a subgroup of Hom(n-Inf)(S)(X,Y ).

Remark 1.8.3. The category of n-buds over S is not additive for n ≥ 1, since the
product of n-germs, whether taken in the category of pointed sheaves or (n-Inf)(S),
is not again an n-germ. But the problem is only that we’ve restricted to the
1-parameter case: commutative n-buds in the general sense of (1.7.3), with no
constraint on the number of parameters, do form an additive category.

2. Basic moduli theory

We now begin to consider the basic moduli theory of the stacks of n-germs,
n-buds, formal Lie varieties, and formal Lie groups.

2.1. The stack of n-germs. In this section we show that the moduli stack of n-
germs Gn, n ≥ 1 is equivalent to the classifying algebraic stack B

(
Aut(Tn)

)
, with

Aut(Tn) as defined in (1.6.5).

Proposition 2.1.1. Gn is a stack over (Sch) for the fpqc topology.

Proof. We have to check that objects and morphisms descend. It is clear that Gn is a
stack for the Zariski topology since we can glue schemes and morphisms of schemes.
So we may restrict to the case of a base scheme S and a faithfully flat quasi-compact
morphism f : S′ → S. Our argument from here will be a straightforward application
of the descent theory in [SGA1, VIII].

Descent for morphisms of germs along f is an immediate consequence of descent
for morphisms of schemes [SGA1, VIII 5.2]. To check descent for objects, let X ′

be an n-germ over S′ equipped with a descent datum. Then X ′ is affine over S′

(1.6.2). So X ′ descends to a scheme X affine over S [SGA1, VIII 2.1]. By descent
for morphisms, the section for X ′ descends to a section σ for X . It remains to
show that X is n-infinitesimal along σ and that constraint (LF1) in the definition
of n-germ (1.5.1) holds for X . We may assume X = Spec A for some quasi-
coherent OS-algebra A . Let I := ker[A → OS ] be the ideal corresponding to σ.
Then A ∼= OS ⊕ I , so I certainly pulls back to the ideal corresponding to the
given section S′ → X ′. Moreover, since arbitrary base change preserves quotients
of quasi-coherent modules, and flat base change preserves powers of ideals, we
conclude that the pullback of I i/I i+1, i = 1, . . . , n, is locally free of rank 1, and
that the pullback of I n+1 is 0. Since S′ → S is faithfully flat, we conclude that
I i/I i+1 itself is locally free of rank 1 [SGA1, VIII 1.10], and that I n+1 = 0. �

Theorem 2.1.2. Gn is equivalent to the classifying stack B
(
Aut(Tn)

)
. In partic-

ular, Gn is algebraic.

Proof. By (1.6.4) and the previous proposition, Gn is a gerbe (for any topology
between the Zariski and fpqc topologies, inclusive) over SpecZ. Moreover, TZ

(1.5.3) is an object of Gn over SpecZ, so that Gn is neutral. The first assertion now
follows from [LMB, 3.21].
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As for algebraicity, we need note only that Aut(Tn) is a smooth, separated
group scheme of finite presentation over Z by (1.6.6), and that the quotient of any
algebraic space by such a group scheme is algebraic [LMB, 4.6.1]. (More generally,
one may weaken the smoothness hypothesis by requiring only that, in its place, G
be flat and of finite presentation [LMB, 10.13.1].) �

Remark 2.1.3. Of course, for an arbitrary group sheaf G on a site C , the stack
B(G) depends on the topology on C . By the theorem, B

(
Aut(Tn)

)
is independent

of the choice of topology on (Sch) between the Zariski and fpqc topologies, inclusive.
In particular, every fpqc-torsor for Aut(Tn) is in fact a Zariski-torsor.

2.2. Bud structures on trivial germs. To prepare for our discussion of the
moduli stack of n-buds in the next section, recall from (1.6.4) that every bud has
locally trivial underlying germ. Hence the classification of bud structures on TS

(1.5.3) assumes an important role in the theory. Let n ≥ 1.

Definition 2.2.1. We define Ln to be the presheaf of sets on (Sch)

Ln : S 7−→ {n-bud structures on Tn,S}.

Fix a base scheme S. By (1.7.5), to give an n-bud structure on TS is to give
an n-bud law F ∈ Γn(S;T1, T2). So by Lazard’s theorem (1.1.7), Ln ≃ A

n−1
Z

for
n ≥ 1, but the isomorphism is not canonical. In the trivial case n = 0, we have
L0
∼= SpecZ.
We have chosen the notation Ln in honor of Lazard.

Remark 2.2.2. The functor Aut(Tn) (1.6.5) acts naturally on Ln as “changes of
coordinate”: given a bud structure TF

S and a germ automorphism f of TS , transport
of structure along f determines a bud structure TG

S , and f is tautologically a bud

isomorphism TF
S
∼
−→ TG

S . Explicitly, denoting by f# the map on global sections of
TS , we have G(T1, T2) = f#

[
F

(
f#−1(T1), f

#−1(T2)
)]

.

2.3. The stack of n-buds. In this section we show that the moduli stack of n-
buds Bn, n ≥ 1, is equivalent to the quotient algebraic stack Aut(Tn)\Ln, with
the schemes Aut(Tn) and Ln as defined in (1.6.5) and (2.2.1), respectively, and
with the action of Aut(Tn) on Ln as described in (2.2.2).

Proposition 2.3.1. Bn is a stack over (Sch) for the fpqc topology.

Proof. As in (2.1.1), we have to check that morphisms and objects descend. The
only new ingredient for n-buds is the multiplication map.

Descent for morphisms of buds is an immediate consequence of descent for mor-
phisms of schemes [SGA1, VIII 5.2] and of compatibility of infinitesimal neighbor-
hoods (1.4.4) and of fibered products with base change, which imply that a germ
morphism locally compatible with the multiplication maps is globally compatible.

For objects, suppose we’re given an n-bud fpqc-locally on S equipped with a
descent datum. By (2.1.1), we get an n-germ X over S. Again using that infinitesi-
mal neighborhoods and fibered products are compatible with base change, the local
multiplication maps descend to a multiplication map on X , and we’re done. �

Theorem 2.3.2. Bn is equivalent to the quotient stack Aut(Tn)\Ln. In particular,
Bn is algebraic.
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Proof. We shall apply [LMB, 3.8] to the tautological morphism π : Ln → Bn. By
(1.6.4) and (1.7.5), π is locally essentially surjective (for the Zariski topology, hence
for any finer topology). Moreover, it is clear from the definitions that the maps

Aut(Tn)× Ln

prLn
//

a
// Ln,

where a denotes the action map described in (2.2.2), induce an isomorphism

Aut(Tn)× Ln
∼
−→ Ln ×Bn

Ln.

The first assertion now follows, and, as in the proof of (2.1.2), the algebraicity
assertion is immediate from [LMB, 4.6.1]. �

Remark 2.3.3. As in (2.1.3), we deduce from the theorem that the quotient stack
Aut(Tn)\Ln is independent of the topology on (Sch) between the Zariski and fpqc
topologies, inclusive.

2.4. Ind-infinitesimal sheaves. To prepare for our discussion of the moduli stacks
of formal Lie varieties and of formal Lie groups in the next two sections, it will
be convenient to first dispense with a few generalities on ind-infinitesimal sheaves
(1.4.5). Let S be a scheme, and recall the truncation functor

(∞-Inf)(S) −→ (n-Inf)(S)

of (1.4.9). Since infinitesimal neighborhoods are compatible with base change
(1.4.4), truncation preserves pullbacks (up to isomorphism), so that it specifies
a morphism of fibered categories

(∞-Inf) −→ (n-Inf).

Given m ≥ n, the diagram

(∞-Inf)
−(m)

//

−(n)

55
(m-Inf)

−(n)

// (n-Inf)

commutes up to canonical isomorphism (or possibly on the nose, depending on
one’s choice of definitions). Similarly, truncation (n-Inf) → (n-Inf) is canonically
isomorphic to the identity functor. Hence we may form the limit lim

←−n
(n-Inf) of the

fibered categories (n-Inf), n ≥ 0, with respect to the truncation functors, and we
obtain a natural arrow

(∗) (∞-Inf) −→ lim
←−
n

(n-Inf).

Let us emphasize that the limit lim
←−n

(n-Inf) is taken in the sense of bicategories; see

the appendix for a basic introduction, especially §A.6 for limits of fibered categories.

Proposition 2.4.1. The arrow (∗) is an equivalence of fibered categories.

Proof. Full faithfulness is an immediate consequence of the definition of ind-infini-
tesimal and the universal mapping property of a colimit. For essential surjectivity,
recall (A.4.3, A.6.2) that an object in lim

←−n
(n-Inf) over the scheme S is a family

(Xn, ϕmn), whereXn ∈ ob(n-Inf)(S) for all n, and ϕmn : X
(n)
m

∼
−→ Xn for all m ≥ n,
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subject to a natural cocycle condition for every l ≥ m ≥ n. For m ≥ n, consider
the composite

(∗∗) Xn

ϕ−1
mn

∼
// X(n)

m
�

� can // Xm.

As m and n vary, the cocycle condition on the ϕmn’s says that the various compos-
ites (∗∗) are organized into a diagram indexed on the totally ordered set N∪{0}. Let
us take the colimit sheaf X := lim

−→n
Xn. Since X is a colimit of a filtered diagram

of sheaves, and all transition morphisms in the diagram are monomorphisms, the
canonical arrow Xn → X is a monomorphism for all n. Since Xn is n-infinitesimal,
Xn →֒ X factors through X(n) for all n. It is now easy to verify that Xn →֒ X(n)

is an isomorphism. Hence X is ind-infinitesimal. Moreover, it is easy to verify that
the arrowsXn

∼
−→ X(n), n ≥ 0, define an isomorphism from (Xn, ϕmn) to the image

of X in lim
←−n

(n-Inf). �

2.5. The stack of formal Lie varieties. We now come to the moduli stack of
formal Lie varieties. Let S be a scheme.

Definition 2.5.1. We define FL V (S) to be the groupoid of formal Lie varieties
and isomorphisms over S.

Remark 2.5.2. It is clear that the base change of a formal Lie variety is again a
formal Lie variety. Hence FL V defines a CFG over (Sch). Moreover, it is clear
from the definition of formal Lie variety (1.2.1) that FL V is a stack for the Zariski
topology. In fact, FL V is a stack for the fpqc topology; this would not be hard
to prove in a direct fashion, but we shall deduce it in (2.5.9) from the analogous
statement for the stack of n-germs Gn (2.1.1).

Our first task for this section is to obtain the analog of (2.1.2) for FL V . Recall

the formal Lie variety ÂS of (1.2.3).

Definition 2.5.3. We define Aut(Â) to be the presheaf of groups on (Sch)

Aut(Â) : S 7−→ AutFL V (S)(ÂS).

We can describe Aut(Â) in a way quite analogous to (1.6.6). Indeed, in analogy

with Tn,S , to give an automorphism of ÂS is to give a power series a1T+a2T
2+· · · ∈

Γ(S)[[T ]] with a1 a unit. So we deduce the following.

Proposition 2.5.4. As a set-valued functor, Aut(Â) is canonically represented by
the open subscheme SpecZ[a1, a

−1
1 , a2, a3 . . . ] of A∞

Z
. �

Theorem 2.5.5. FL V ≈ B
(
Aut(Â)

)
, where the right-hand side denotes the

classifying stack with respect to the Zariski topology.

Proof. The proof is essentially the same as that of (2.1.2): FL V is plainly a gerbe

over SpecZ for the Zariski topology, and SpecZ
bAZ−→ FL V defines a section. �

Remark 2.5.6. Once we see in (2.5.9) that FL V is a stack for the fpqc topology,

it will follow that B
(
Aut(Â)

)
is independent of the choice of topology between the

Zariski and fpqc topologies, inclusive. In particular, every fpqc-torsor for Aut(Â)
is in fact a Zariski-torsor.
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Remark 2.5.7. Unlike Gn (2.1.2), FL V is not algebraic: informally, the group

Aut(Â) is “too big”, i.e. it is not of finite type.

Let us now turn to the relation between the stacks FL V and Gn, n ≥ 0. Recall

that the truncation functors induce an equivalence (∞-Inf)
≈
−→ lim
←−n

(n-Inf) (2.4.1).

As noted in (1.5.4), this equivalence restricts to an arrow

(∗) FL V −→ lim
←−
n

Gn.

As in the previous section, we emphasize that the limit in the display is taken in
the sense of bicategories; see the appendix.

Theorem 2.5.8. The arrow (∗) is an equivalence of stacks.

Proof. Let (Xn, ϕmn) be an object in lim
←−n

Gn, say over the scheme S. As in the

proof of (2.4.1), the ϕmn’s organize the Xn’s into a diagram

(∗∗) S ∼= X0 →֒ X1 →֒ X2 →֒ · · ·

indexed on the totally ordered set N ∪ {0}, such that the inclusion Xn →֒ Xm

identifies Xn
ϕ−1

mn−−−→
∼

X
(n)
m for all m ≥ n. In light of (2.4.1) and its proof, all we have

to show is that the colimit sheaf X := lim
−→n

Xn is a formal Lie variety.

The proof is essentially the same as that of (1.6.4). Localizing (in the Zariski
topology) on S, we may assume that S is an affine scheme SpecA and that X1

has trivial conormal bundle. We claim that X ≃ Spf A[[T ]]. Indeed, by (1.6.2), we
may assume that Xn = SpecBn, n ≥ 0, for Bn an augmented A-algebra, say with
augmentation ideal In satisfying In+1

n = 0. Then (∗∗) translates into a diagram of
augmented A-algebras

A ∼= B0 և B1 և B2 և · · ·

such that Bm ։ Bn identifies Bm/I
n+1
m

∼
−→ Bn for all m ≥ n. Now, by assumption

the conormal module I1 (here I2
1 = 0) for B1 is a free A-module of rank 1. Let t1

be any generator. Now successively choose a lift t2 ∈ B2 of t1, a lift t3 ∈ B3 of t2,
and so on. Since In/I

2
n
∼= I1 is free for all n, the proof of (1.6.4) shows exactly that

the map

A[[T ]] // Bn

T � // tn

induces A[[T ]]/(T )n+1 ∼−→ Bn. Hence we obtain a topological isomorphism

A[[T ]]
∼
−→ lim
←−
n

Bn.

The theorem follows. �

Corollary 2.5.9. FL V is a stack over (Sch) for the fpqc topology.

Proof. Immediate from (2.1.1), (A.6.4), and the theorem. �

Remark 2.5.10. Our definition of formal Lie variety (1.2.1) has a kind of built-in
local triviality for the Zariski topology. Though one may be tempted to consider for-
mulating the local triviality condition with respect to other topologies, the corollary
says that the notion of formal Lie variety is independent of the choice of topology
for local triviality between the Zariski and fpqc topologies, inclusive.
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2.6. The stack of formal Lie groups. Now that we have discussed the stack of
formal Lie varieties, we turn to the moduli stack of formal Lie groups. Let S be a
scheme.

Definition 2.6.1. We define (FLG)(S) to be the category of formal Lie groups
and homomorphisms over S. We define FL G (S) to be the groupoid of formal Lie
groups and isomorphisms over S.

Remark 2.6.2. Since formal Lie varieties are stable under base change, it is clear
that formal Lie groups are stable under base change. Hence (FLG) defines a fibered
category, and FL G a CFG, over (Sch). We shall verify in (2.6.6) that FL G is a
stack for the fpqc topology. In some sense, this almost follows in a purely formal
fashion from the analogous result for FL V (2.5.9). The only difficulties arise when
trying to glue locally given multiplication maps X×S X → X : first, strictly speak-
ing, the product of formal Lie varieties is not a (1-parameter) formal Lie variety,
hence not an object of FL V ; and second, FL V only parametrizes isomorphisms
between objects, not arbitrary morphisms. Of course, these difficulties are merely
artifacts of our choices to work only with 1-parameter formal Lie varieties and only
with stacks of groupoids. We would have no trouble if we had worked from the
outset with pointed formal Lie varieties in the general sense of (1.2.2), with no
constraint on the number of parameters, and with stacks of categories.

In analogy with (1.7.11), given a group law F over Γ(S) and a base change

f : S′ → S, one has ÂF
S ×S S

′ ∼= ÂF ′

S′ , where F ′ is the group law over Γ(S′) obtained
by applying f# to the coefficients of F .

Our first goal in this section is to prove the analog of (2.3.2) for FL G . Recall

the formal Lie variety ÂS of (1.2.3).

Definition 2.6.3. We define L to be the presheaf of sets on (Sch)

L : S 7−→ {formal Lie group structures on ÂS}.

In analogy with Ln (2.2.1), we have L ≃ SpecZ[a1, a2, . . . ] = A∞
Z

by Lazard’s

theorem (1.1.7), but the isomorphism is not canonical. Just as in (2.2.2), Aut(Â)
acts naturally on L as “changes of coordinate”. Just as in (2.3.2), we deduce the
following.

Theorem 2.6.4. FL G ≈ Aut(Â)\L. �

Remark 2.6.5. It is an immediate consequence of (2.5.6) that the quotient stack

Aut(Â)\L is independent of the choice of topology between the Zariski and fpqc
topologies, inclusive.

Corollary 2.6.6. FL G is a stack for the fpqc topology. �

Remark 2.6.7. In analogy with (2.5.7), unlike the moduli stack of n-buds Bn

(2.3.2), FL G is not algebraic.

In analogy with the previous section, let us now turn to the relation between the
stacks FL G and Bn, n ≥ 0. By (1.7.7), we may form the limit lim

←−n
Bn of the

Bn’s with respect to the truncation functors, and we obtain an arrow

(∗) FL G −→ lim
←−
n

Bn.

As in previous sections, we emphasize that the limit is taken in the sense of bicat-
egories; see the appendix.
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Theorem 2.6.8. The arrow (∗) is an equivalence of stacks.

Proof. We could prove the theorem in a fairly direct fashion entirely analogous to
(2.5.8). Instead, we can obtain the theorem as a more-or-less formal consequence
of (2.5.8). Indeed, for any base scheme S and n ≥ 0, the category (n-Inf)(S) con-
tains finite products (1.4.10), and truncation between the (n-Inf)(S)’s for varying n
preserves finite products. Hence passing to the limit of the (n-Inf)(S)’s commutes
with taking commutative group objects (A.7.2). Now use (2.5.8) and the identifica-
tion of Bn(S) with objects of Gn(S) endowed with a commutative group structure
(1.8.1). �

3. The height stratification: buds

Fix a prime number p once and for all. We shall now begin to study the algebraic
geometry of the classical notion of height for formal group laws and bud laws over
rings of characteristic p. The essential feature of the theory is a stratification,
relative to p, on the moduli stack FL G of formal Lie groups and on the stacks
Bn of n-buds. We shall begin by working in the context of buds; we shall turn to
formal Lie groups in §4.

In order to reduce clutter, we shall choose not to embed p in our notation, though
one certainly obtains a different stratification for each choice of p.

3.1. Review of formal group laws II. We devote this section to a brief survey
of some of the classical algebraic theory of formal group laws and bud laws related
to height, as well as some somewhat technical refinements to the material in §1.1.
We shall use [L] and [F] as our main references, although there are many other
sources available. As for §1.1, the reader may wish to skip this section and refer
back only as needed.

Let A be a ring and F an n-bud law, n ≥ 1, or a formal group law.

Definition 3.1.1. For m ∈ N, we define [m]F to be the element of A[T ]/(T )n+1

in the bud law case, and of A[[T ]] in the group law case,

[m]F (T ) := F (· · ·F (F (T, T ), T ), · · · , T︸ ︷︷ ︸
m T ’s

).

In other words, [1]F (T ) = T , and [m+ 1]F (T ) = F
(
[m]F (T ), T

)
.

Remark 3.1.2. Since

F (T1, T2) = T1 + T2 + (higher order terms),

we have

[m]F (T ) = mT + (higher order terms).

We will be almost exclusively interested in [p]F for varying bud or group laws
F . If A is of characteristic p, then we conclude from (3.1.2) that [p]F = 0 or has
lowest degree term of degree ≥ 2. In fact, a much stronger statement holds.

Proposition 3.1.3. Suppose A has characteristic p. Let f : F → G be a homo-
morphism of bud laws or formal group laws over A. Then f is 0 or of the form

aphT ph

+a2phT 2ph

+ · · · for some nonnegative integer h and some nonzero aph ∈ A.

In particular, [p]F is 0 or of the form aphT ph

+ a2phT 2ph

+ · · · , aph 6= 0.
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Proof. [F, I §3 Theorem 2(ii)], which works for bud laws as well as formal group
laws. Note that [p]F is plainly a homomorphism F → F . �

The proposition motivates the following definition. Let h be a nonnegative inte-
ger.

Definition 3.1.4. F has height h if [p]F is of the form aphT ph

+(higher order terms)
for some aph ∈ A×.

Remark 3.1.5. In the bud law case, height h only makes sense for n ≥ ph.

Remark 3.1.6. By (3.1.2), bud laws and group laws of positive height only occur
over rings of characteristic p. If F is of positive height h, then F is a truncated

polynomial in the bud law case, and power series in the group law case, in T ph

(3.1.3). At the other extreme, F has height 0 ⇐⇒ A is a Z[ 1p ]-algebra.

Remark 3.1.7. The definition of height in (3.1.4) differs from the one in the
classical literature over rings of characteristic p; compare e.g. [L, p. 266] or [F, p.
27]. Explicitly, F has height h in the classical sense if

[p]F (T ) = aphT ph

+ (higher order terms)

with aph 6= 0, whereas we require, in addition, that aph be a unit. In the classical
sense, every F is of finite height or satisfies [p]F = 0. But in the sense of (3.1.4),
there certainly exist F for which [p]F 6= 0 but the height is not defined. The
modified version of the classical definition allows one to obtain better behavior
with regard to change of base ring.

Remark 3.1.8. In the group law case, it is customary to say that F is of infinite
height if [p]F = 0. For example, over a ring of characteristic p, the additive law
F (T1, T2) = T1 + T2 has infinite height. We remark that this notion would fit
naturally into the geometric theory of formal Lie groups, but we will not have
occasion to introduce it here.

Before continuing with our discussion of [p], it is now convenient to digress for a
moment on some technical matters underpinning some of the results we surveyed
in §1.1. Quite generally, let P ∈ A[T1, T2] be any polynomial.

Definition 3.1.9. We say that P is a symmetric polynomial 2-cocycle, or SPC for
short, if

(S) P (T1, T2) = P (T2, T1) in A[T1, T2]; and
(C) P (T2, T3)−P (T1 +T2, T3)+P (T1, T2 +T3)−P (T1, T2) = 0 in A[T1, T2, T3].

Remark 3.1.10. To explain the terminology, recall that the group cohomology
H•(A,A) can be computed by the cochain complex

(
C•(A,A), δ•

)
, where Ci :=

Ci(A,A) := Hom(Sets)(A
i, A), i ≥ 0, and δi : Ci → Ci+1 sends

f(a1, . . . , ai)
δi

7−→ f(a2, . . . , ai+1)

+

i∑

j=1

(−1)jf(a1, . . . , aj−1, aj + aj+1, aj+2, . . . , ai+1)

+ (−1)i+1f(a1, . . . , ai).
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For each i, the polynomial ring A[T1, . . . , Ti] maps in the obvious way to Ci. Hence
(C) in the definition justifies “polynomial 2-cocycle”. Plainly (S) justifes “symmet-
ric”.

Example 3.1.11. For m ≥ 2, let

λ(m) :=

{
l, l is a prime and m is a power of l;

1, otherwise.

Then we define Lazard’s polynomials Bm ∈ Z[T1, T2] by

Bm(T1, T2) := (T1 + T2)
m − Tm

1 − T
m
2

and Cm ∈ Z[T1, T2] by

Cm(T1, T2) :=
1

λ(m)
Bm(T1, T2).

Since δ1(−Tm) = Bm, we deduce at once that Bm and Cm are SPC’s over Z,
homogenous of degree m. Hence Bm and Cm define SPC’s over any ring.

Note that over a ring of characteristic p and for m a power of p, we have Bm =
0. But the SPC Cm is more interesting. The following is one of Lazard’s most
important technical results, valid for any ring A and for any m ≥ 2.

Theorem 3.1.12 (Lazard). Let P be a homogenous SPC of degree m over A. Then
there exists a unique a ∈ A such that P = aCm.

Proof. It is easy to compute directly that Cm is primitive, which implies the unicity
of a. Existence of a is much harder; see [L, Lemme 3] or [F, III §1 Theorem 1a]. �

SPC’s occur in the theory of formal group laws and bud laws in the following
simple way; we shall encounter them in a somewhat different context in §3.7. Let
m ≥ 2, and let F and G be group laws or n-bud laws over A whose respective
(m−1)-truncations F (m−1) and G(m−1) (1.7.7) are equal, m ≤ n−1 in the bud case.
Then a fairly simple calculation shows that F (m) and G(m) differ by a homogenous
SPC of degree m. Hence (3.1.12) implies the following.

Corollary 3.1.13 (Lazard). There exists a unique a ∈ A such that

F (m) = G(m) + aCm. �

The corollary plays an important role in Lazard’s construction of a universal
group law U over Z[t1, t2, . . . ] we cited in (1.1.7). We will use the following refine-
ment of (1.1.7) for calculations in §3.5. It describes the group law constructed by
Lazard in the proofs of [L, Théorèmes II and III].

Theorem 3.1.14 (Lazard). The universal formal group law U(T1, T2) of (1.1.7)
may be chosen such that for all n ≥ 1,

(i) the coefficients of the truncation U (n) involve only t1, . . . , tn−1;
(ii) U (n), regarded as defined over Z[t1, . . . , tn−1] by (i), is a universal n-bud

law; and
(iii) there is an equality of elements in Z[t1, . . . , tn−1, s][T1, T2]/(T1, T2)

n+1,

U (n)(t1, . . . , tn−2, tn−1 + s)(T1, T2)− U
(n)(t1, . . . , tn−1, )(T1, T2)

= sCn(T1, T2). �
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We now return to our discussion of [p]. We will use the following lemma to
study the coefficients of [p] in §3.5. Let F , G, and m be as in (3.1.13), so that
F (m) = G(m) + aCm for a unique a ∈ A.

Lemma 3.1.15. For any k ≥ 1,

[k]F (m)(T ) = [k]G(m)(T ) +
km − k

λ(m)
· aTm.

In particular, for k = p and m of the form ph, we have

[p]F (ph)(T ) = [p]G(ph)(T ) +
(
pph−1 − 1

)
aT ph

.

Proof. [L, Lemme 6] or [F, III §1 Lemma 4]. �

In later sections, we will be especially interested in group laws of a given height
for which [p] is as simple as possible. Fix h ≥ 1.

Theorem 3.1.16. There exists a formal group law Hh over Fp such that [p]Hh
(T ) =

T ph

.

Proof. See, for example, [F, III §2 Theorem 1]. �

Notation 3.1.17. We fix once an for all a formal group law Hh as in (3.1.16). As
we shall often work with respect to fixed h, we often write just H for Hh, provided
no confusion seems likely.

If A is of characteristic p, then we may view H as defined over A. Let n ≥ ph,
and consider the n-truncation H(n).

Proposition 3.1.18. Let F be an n-bud law (resp., formal group law) of height h
over A. Then there exists a finite étale extension ring (resp., a countable ascending
union of finite étale extension rings) B of A such that F ≃ H(n) (resp., F ≃ H)
over B.

Proof. We’ll proceed by extracting some arguments from the proofs of the state-
ments leading up to the proof of Theorem 2 in [F, III §2]. There is also a somewhat
cleaner version of the proof sketched in [Mi, 10.4].

It suffices to consider the bud law case; the group law case then follows by
considering the various truncations F (n) for higher and higher n. To begin, the
proof of [F, III §2 Lemma 3] shows that there exists a finite étale extension ring B

of A such that F is isomorphic over B to an n-bud law G for which [p]G(T ) = T ph

.
A bit more explicitly, whereas [F] takes A to be a separably closed field and proceeds
by finding solutions to certain (separable) equations in A, one can proceed in our
case by formally adjoining solutions to certain (separable) equations to A, that is,
one can obain B as an iterated extension ring of (finitely many) rings of the form
A[X ] modulo a separable polynomial.

The remaining step is to show that over any ring, any two bud laws for which

[p](T ) = T ph

are isomorphic. This is probably best and most simply seen via a
direct argument, but it can be gleaned from [F, III §2] by combining arguments
(suitably adapted to the bud case) in the proofs of Lemma 2, Proposition 3, and
Theorem 2. �

Remark 3.1.19. In particular, the ring B in the theorem is faithfully flat over A.
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3.2. Multiplication by p. Let X be an n-bud or formal Lie group over the scheme
S. Then (using (1.8.2) in the bud case) the endomorphisms of X form an abelian
group. So we may make the following definition.

Definition 3.2.1. We define [p]X to be the element of End(n-buds)(S)(X) in the
bud case, and of End(FLG)(S)(X) in the formal Lie group case, p idX .

Remark 3.2.2. When X = TF
S for an n-bud law F ∈ Γn(S;T1, T2) (1.7.5), the

morphism

X
[p]X

// X

corresponds to the OS-algebra map

OS [T ]/(T )n+1 OS [T ]/(T )n+1oo

[p]F (T ) T,
�oo

with [p]F as defined in (3.1.1). There is an obvious analogous statement when F is
a group law.

Remark 3.2.3. One checks at once that truncation functors are additive functors
on the category of formal Lie groups and on the various categories of buds. Hence
truncation preserves [p]: if X is a formal Lie group or an m-bud with m ≥ n, then

[p]
(n)
X = [p]X(n) .

Remark 3.2.4. Similarly, consider the category of n-buds or of formal Lie groups
over S. Then for any morphism f : S′ → S, the base change functor −×SS

′ is addi-

tive, hence preserves [p]. When X = TF
S or X = ÂF

S , recall that the multiplication
law on X ×S S

′ is given by the law F ′ obtained by applying f# to the coefficients
of F (1.7.11, 2.6.2). Hence [p]F ′ is obtained by applying f# to the coefficients of
[p]F .

3.3. Zero loci of line bundles. In the next section we’ll describe the height
stratification on Bn as arising from a succession of zero loci of sections of line
bundles. Our aim in this section is to dispense with a few of the basic preliminaries.
The material we shall discuss is general in nature and is independent of our earlier
work.

Let (Vect1) denote the fibered category on (Sch) that assigns to each scheme S
the category of locally free OS-modules of rank 1 and all module homomorphisms
(with the usual pullback functors). Then (Vect1) is an fpqc stack [SGA1, VIII
1.12]. Note that the underlying moduli stack of (Vect1), obtained by discarding the
non-Cartesian morphisms, is just B(Gm). Let F be a fibered category over (Sch).

Definition 3.3.1. A line bundle on F is a 1-morphism L : F → (Vect1) in
Fib

(
(Sch)

)
. A morphism L → L ′ of line bundles on F is a 2-morphism L → L ′

in Fib
(
(Sch)

)
.

When F is an algebraic stack, one recovers the usual notion of line bundle on F ;
see [LMB, 13.3] (strictly speaking, [LMB] would take (Vect1)(S) to be the opposite
of the category of locally free OS-modules of rank 1, but let us not belabor this
point).

Example 3.3.2. For any fibered category F , we denote by OF the line bundle
that assigns to each X ∈ ob F over the scheme S the trivial line bundle OS , and
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to each morphism µ : Y → X over f : T → S the Cartesian morphism in (Vect1)

corresponding to the canonical isomorphism OT
∼
−→ f∗OS .

Let L be a line bundle on the fibered category F .

Definition 3.3.3.

(a) A global section, or just section, of L is a morphism a : OF → L .
(b) Given a section a of L , the zero locus of a is the full subcategory V (a) of

F whose objects X over the scheme S are those for which aX : OS → LX

is the 0 map.

Let a be a section of L . The basic result of interest to us is the following. The
proof is straightforward.

Proposition 3.3.4.

(i) V (a) is a sub-fibered category of F , and the inclusion functor V (a) → F
is a closed immersion.

(ii) If F is a CFG, or stack, or algebraic stack, then so is V (a). �

3.4. The height stratification on the stack of n-buds. In this section, we
translate the classical notion of height for bud laws to the geometric setting by
defining the height stratification on the stack Bn. We shall define the analogous
stratification on the stack of formal Lie groups in §4.1.

Let X be an n-bud over the scheme S with section σ : S → X . Let

IX := ker
[
σ−1OX

σ♯

−→ OS

]
.

Then the endomorphism [p]X of X (3.2.1) determines an endomorphism [p]IX
of

IX .
Now let h be a nonnegative integer, and assume n ≥ ph.

Definition 3.4.1. We sayX has height ≥ h if the endomorphism [p]IX
: IX → IX

has image in I ph

X . We denote by B≥h
n the full subcategory of Bn of n-buds of height

≥ h.

Example 3.4.2. Let X = TF
S for some n-bud law F over Γ(S) (1.7.5). Then we see

from (3.2.2) that X has height ≥ h ⇐⇒ [p]F ∈ T ph

·Γn(S;T ). So our terminology
is compatible with (3.1.4).

Remark 3.4.3. Recall that [p] (3.2.4) is compatible with base change. Hence
height ≥ h is stable under base change. Hence B≥h

n is fibered over (Sch).

Remark 3.4.4. Similarly, height ≥ h is stable under truncation (provided we don’t

truncate below n = ph). More precisely, X has height ≥ h ⇐⇒ X(ph) has height
≥ h.

Remark 3.4.5. Of course, for fixed n, there are only finitely many values (possibly
none) of h for which height ≥ h makes sense. So we get a finite decreasing chain
Bn = B≥0

n !B≥1
n ! B≥2

n ! · · · .

We shall see in a moment that the inclusion B≥h
n →֒ Bn is a closed immersion.

First, some notation.
By definition of n-germ (1.5.1) for n ≥ 1, the conormal sheaf IX/I 2

X associated
to the section S → X is a line bundle on S. Moreover, since the conormal sheaf
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associated to a section is compatible with base change on S [EGAIV4, 16.2.3(ii)],
formation of the conormal bundle defines a line bundle on Bn.

Definition 3.4.6. We denote by L the line bundle on Bn associating to each bud
its associated conormal sheaf. We define Lh := L |

B≥h
n

.

Remark 3.4.7. Clearly, the same construction defines a line bundle L ′ on the
stack Gn of n-germs, and L is just the pullback of L ′ along the natural forgetful
morphism Bn → Gn.

Remark 3.4.8. Strictly speaking, L and Lh depend on n. But the dependence on
n is largely superficial: since the conormal sheaf of an immersion depends only on
the 1st infinitesimal neighborhood, formation of L is compatible with truncation
Bm → Bn, and similarly for Lh. In other words, up to canonical isomorphism,
we may construct L on Bn by first constructing L on B1 and then pulling back
along Bn → B1; and similarly for Lh, replacing B1 by Bph . So, to avoid clutter,
we shall abuse notation and simply suppress the n when writing L and Lh.

When X has height ≥ h, the map [p]IX
: IX → I ph

X induces a map of line
bundles

(∗) IX/I
2
X −→ I ph

X /I ph+1
X .

But I ph

X /I ph+1
X

∼= (IX/I 2
X)⊗ph

(1.6.3). So we may express (∗) as

(Lh)X −→ (Lh)⊗ph

X ,

or as a section

(∗∗) (vh)X : OS −→ (Lh)⊗ph−1
X .

Since [p] is compatible with pullbacks, we may make the following definition.

Definition 3.4.9. We denote by vh the section of L ⊗ph−1
h defined by (∗∗).

Example 3.4.10. By (3.1.2), v0 is just the section p of OBn
.

Example 3.4.11. Of course, we’ve taken pains to express vh in a coordinate-free
way, so that it is, in some sense, canonical. But when X admits a coordinate, LX

is trivial, and vh can be understood more concretely. Precisely, suppose X = TF
S

for some n-bud law F over Γ(S). Then IX = T · OS [T ]/(T )n+1, and there is an
obvious trivialization

OS
∼ // IX/I

2
X = LX

1
� // image of T.

The displayed trivialization induces a natural trivialization of L⊗ph−1
X .

Now suppose X has height ≥ h, so that [p]F is of the form

aphT ph

+ (higher order terms) (3.4.2).

Then, under our trivialization of (Lh)⊗ph−1
X = L ⊗ph−1

X , (vh)X corresponds exactly
to aph ∈ Γ(S).

Remark 3.4.12. Just as for Lh, vh implicitly depends on n. But vh is essentially
independent of n in the same sense as Lh is (3.4.8).



32 BRIAN D. SMITHLING

Proposition 3.4.13. Assume h ≥ 1. Then B≥h
n is the zero locus (3.3.3) in B≥h−1

n

of the section vh−1.

Proof. Let X be an n-bud of height ≥ h− 1. We claim

X ∈ obV (vh−1) ⇐⇒ (vh−1)X = 0

⇐⇒ [p]IX
carries IX into I ph−1+1

X

(†)
⇐⇒ [p]IX

carries IX into I ph

X

⇐⇒ X ∈ ob B≥h
n .

Only the “⇐⇒” marked (†) requires proof. For this, the implication ⇐= is trivial.
For the implication =⇒, the assertion is local on S, so we may assume X is of the
form TF

S (1.7.5). Now use (3.1.3) and (3.2.2). �

Corollary 3.4.14. B≥h
n is an algebraic stack for the fpqc toplogy, and the inclusion

functor B≥h
n → Bn is a closed immersion.

Proof. Apply (2.3.1), (2.3.2), (3.3.4), and the proposition. �

Remark 3.4.15. Combining (3.4.10) and (3.4.13), we see that B≥1
n is precisely

the stack of n-buds over Fp-schemes.

Remark 3.4.16. The proposition says that the property of height ≥ h depends
only on a bud’s ph−1-truncation. So we could extend the notion of height ≥ h to
n-buds for n ≥ ph−1, but this added bit of generality would offer no real advantage
to us.

3.5. The stack of height ≥ h n-buds. Let h ≥ 1 and n ≥ ph. Our aim in this
section is to obtain a description of B≥h

n (3.4.1) analogous to the description of Bn

in (2.3.2).
As a warm-up, note first that the case h = 1 is easy: B≥1

n ≈ Bn ⊗ Fp by

(3.4.15), so B≥1
n ≈ Aut(Tn)Fp

\(Ln)Fp
by (2.3.2), where (Ln)Fp

:= Ln⊗Fp ≃ A
n−1
Fp

and Aut(Tn)Fp
:= Aut(Tn)⊗ Fp is an open subscheme of An

Fp
.

To treat the case of general h, let us begin by constructing a convenient pre-
sentation of B≥h

n . Let A be the polynomial ring Z(p)[t1, . . . , tn−1], and let F be

a universal (for Z(p)-algebras) n-bud law over A such that the truncation F (n′)

satisfies (i)–(iii) in (3.1.14) for all n′ ≤ n. Let ah denote the coefficient of T ph

in
[p]F (T ) ∈ A[T ]/(T )n+1 (3.1.1). For h ≥ 1, we define

• Ah := A/(p, a1, . . . , ah−1);
• Fh := the reduction of F over Ah; and
• Xh := TFh

Ah
.

By (3.1.3) and (3.4.2), Xh has height ≥ h. So Xh determines (up to isomorphism)
a classifying map

(∗) SpecAh
Xh−−→ B≥h

n .

Theorem 3.5.1. Aut(Tn)Fp
acts naturally on SpecAh, and (∗) identifies

Aut(Tn)Fp
\ SpecAh ≈B≥h

n .

Proof. The theorem is clear for h = 1, since plainlyX1 identifies SpecA1
∼
−→ (Ln)Fp

.
Now, for any h, the theorem is equivalent by [LMB, 3.8] to
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• (∗) is locally essentially surjective;
• Aut(Tn)Fp

acts on SpecAh; and
• the Aut(Tn)Fp

-action induces

Aut(Tn)Fp
× SpecAh

∼= SpecAh ×B
≥h
n

SpecAh.

So we need note just that the diagram

SpecAh+1
�

�

//

Xh+1

��

SpecAh

Xh

��

B≥h+1
n

�

�

// B≥h
n

is Cartesian by (3.4.11) and (3.4.13), and everything follows by induction on h. �

Remark 3.5.2. Though we didn’t need it explicitly in the proof of the theorem,
the ring Ah and the bud law Fh admit an obvious modular interpretation: namely,
Fh is universal amongst n-bud buds of height ≥ h. On the other hand, one could
use universality of Fh to give an alternative proof of the theorem quite along the
lines of (2.3.2), without appealing to induction.

The theorem leads us to consider closely the ring Ah. The essential observation
is the following result on A.

Proposition 3.5.3. The map of polynomial rings Z(p)[u1, . . . , un−1] → A deter-
mined by

(∗∗) ui 7−→

{
ah i = ph − 1 for h = 1, 2, . . . ;

ti otherwise

is an isomorphism. In particular, A/(a1, . . . , ah−1) is a polynomial ring over Z(p)

on n− h variables.

Proof. Combining (3.1.15) with the form of F described in (3.1.14), we deduce that

ah(t1, . . . , tpj−2, tph−1 + s)− ah(t1, . . . , tpj−1) = (pph−1 − 1)s

as elements in Z(p)[t1, . . . , tph−1, s]. Hence

ah(t1, . . . , tph−1) = (pph−1 − 1)tph−1 + (terms involving t1, . . . , tph−2).

But, for h ≥ 1, pph−1−1 is a unit in any Z(p)-algebra. The proposition now follows
easily. �

Corollary 3.5.4. SpecAh ≃ A
n−h
Fp

. �

Remark 3.5.5. There are natural analogs of (3.5.3) and (3.5.4) in the group law
setting: if U is a universal (for Z(p)-algebras) formal group law over Z(p)[t1, t2, . . . ]

of the form described in (3.1.14), and we again denote by ah the coefficient of T ph

in [p]U (T ), then

• the map Z(p)[u1, u2, . . . ] → Z(p)[t1, t2, . . . ] specified by (∗∗) is an isomor-
phism of polynomial rings; and
• Z(p)[t1, t2, . . . ]/(a1, . . . , ah−1) is a polynomial ring over Z(p) on the images

of the ti for i 6= p1 − 1, p2 − 1, . . . , ph−1 − 1.
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Moreover, in analogy with (3.5.2), the reduction of U over

Z(p)[t1, t2, . . . ]/(p, a1, . . . , ah−1) ∼= Fp[t1, t2, . . . ]/(a1, . . . , ah−1),

where ai denotes the reduction of ai mod p, is plainly of height ≥ h, and indeed
universal amongst group laws of height ≥ h.

Remark 3.5.6. It would also be possible to obtain (3.5.4) essentially from Landwe-
ber’s classification of invariant prime ideals in MU∗ [Lan1, 2.7], or by considering
p-typical group laws over Z(p). We have chosen our approach for its more direct
emphasis on elementary properties of [p].

We will now conclude the section by applying some of our results thus far to
considerations of smoothness and dimension of the algebraic stacks Bn and B≥h

n .
We shall use freely the language of [LMB], but let us state here explicitly the notion
of relative dimension of a morphism. We will not (and [LMB] does not) attempt
to define the relative dimension of an arbitrary locally finite type morphism of
algebraic stacks f : X → Y . We can, however, give a satisfactory definition when
f is smooth. Indeed, if ξ is a point of X [LMB, 5.2], then let SpecL→ Y be any

representative of f(ξ), set XL := SpecL×Y X , and let ξ̃ be any point of XL lying
over ξ. Then XL is a locally Noetherian algebraic stack, and the relative dimension
of f at ξ is the integer dimξ f := dimeξ XL [LMB, 11.14]. It is straightforward to

verify that the definition is independent of the choices made.

Theorem 3.5.7. For n ≥ 1, Bn is smooth over SpecZ of relative dimension −1
at every point. For h ≥ 1 and n ≥ ph, B≥h

n is smooth over SpecFp of relative
dimension −h at every point.

Proof. The assertion for Bn is immediate from the definitions and from Bn ≈
Aut(Tn)\Ln (2.3.2), since Ln ≃ A

n−1
Z

and Aut(Tn) is an open subscheme of An
Z

(1.6.6). The assertion for B≥h
n is similarly immediate from (3.5.1) and (3.5.4). �

3.6. The stratum of height h n-buds. In this section we study the strata of
the height stratification on Bn, or, in other words, the notion of (exact) height for
buds. Let h ≥ 1 and n ≥ ph+1.

Definition 3.6.1. We denote by Bh
n the algebraic stack obtained as the open

complement of B≥h+1
n in B≥h

n . We call the objects of Bh
n the n-buds of height h,

or sometimes of exact height h.

Remark 3.6.2. Since formation of infinitesimal neighborhoods is compatible with
base change, it’s clear from the definitions that height h is stable under truncation
(provided we don’t truncate below n = ph+1). More precisely, an n-bud X has

height h ⇐⇒ X(ph+1) has height h.

Let S be a scheme. We can give a more concrete description of the n-buds of
height h over S as follows. Since Bh

n is a stack, height h is a local condition. So,
by (1.6.4), the essential case to consider is the n-bud TF

S (1.7.5) for some bud law
F over Γ(S). In this case, we have the pleasing result that the notion of height in
(3.6.1) agrees exactly with that for bud laws (3.1.4).

Proposition 3.6.3. TF
S has height h ⇐⇒ [p]F (3.1.1) is of the form

[p]F (T ) = aphT ph

+ a2phT 2ph

+ · · · , aph ∈ Γ(S)×.
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Proof. Let X := TF
S . By (3.1.3) and (3.4.2), X has height ≥ h ⇐⇒ [p]F is of the

asserted form, only with no constraint on aph . Now, (3.4.11) and (3.4.13) say that
the closed subscheme Z := Spec OS/aphOS of S is universal amongst all S-schemes
S′ with the property that S′×S X is an n-bud of height ≥ h+ 1. So X is of height
h ⇐⇒ Spec OS/aphOS = ∅ ⇐⇒ aph is a unit. �

Remark 3.6.4. In our discussion of line bundles in §3.3, we could have introduced
the notion of principal open substack associated to a section of a line bundle as a
sort-of complement to the notion of zero locus of a section of a line bundle. Then
(3.6.3) would show, in essence, that Bh

n can be obtained as the principal open
substack in B≥h

n associated to vh (3.4.9). The details are straightforward, but we
shall decline to pursue them further.

Remark 3.6.5. In analogy with (3.4.16), (3.6.3) allows us to extend the notion of
exact height h to n-buds for n ≥ ph, but the added bit of generality again offers no
real advantage to us.

Remark 3.6.6. We caution that potential confusion lurks in definitions (3.4.1)
and (3.6.1): to say that a bud has “height ≥ h” is not to say that it has “height

h′ for some h′ ≥ h”. For example, if [p]F (T ) = aphT ph

+ a2phT 2ph

+ · · · with aph

a nonzero nonunit, then TF
S will have height ≥ h but will not have a well-defined

height.

Our goal for the remainder of the section is to obtain a characterization of Bh
n.

Recall the formal group law H = Hh of (3.1.17) and its n-truncation H(n) (1.7.7).

By (3.6.3), the n-bud TH(n)

S has height h.

Definition 3.6.7. We define Aut(H(n)) to be the presheaf of groups on (Sch)/Fp

Aut(H(n)) : S 7−→ AutΓ(S)(H
(n)) ∼= Aut(n-buds)(S)

(
TH(n)

n,S

)
.

Our theorem will assert that Bh
n is the classifying stack of Aut(H(n)). Now,

up to this point, the classifying stacks we’ve encountered have been essentially
independent of the choice of topology; see (2.1.3) and (2.5.6). But our theorem
would fail if we only considered Aut(H(n))-torsors for, for example, the Zariski
topology. It will be convenient to formulate the theorem in terms of the finite étale
topology [SGA3I, IV 6.3] instead. Quite generally, given a group G over SpecFp, we
write Bfét(G) for the stack over (Sch)/Fp

of G-torsors for the finite étale topology.

Theorem 3.6.8. Bh
n ≈ Bfét

(
Aut(H(n))

)
.

Proof. By (1.6.4), (1.7.5), (3.1.16), and (3.1.18), Bh
n is a neutral gerbe over SpecFp

for the finite étale topology, with section provided by TH(n)

Fp
. So apply [LMB, 3.21].

�

Remark 3.6.9. Since Bn is a stack for the fpqc topology (2.3.1), so is its locally
closed substack Bh

n. Hence we deduce that B
(
Aut(H(n))

)
is independent of the

topology on (Sch)/Fp
between the finite étale and fpqc topologies, inclusive. In

particular, every fpqc-torsor for Aut(H(n)) is in fact a finite-étale-torsor.
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3.7. Automorphisms and endomorphisms of buds of height h. Let h ≥ 1
and let S be a scheme. For n ≥ ph+1, by (3.6.8), every n-bud of height h over

S is isomorphic finite-étale locally to TH(n)

S , with H = Hh the formal group law

of (3.1.17) and H(n) its n-truncation (1.7.7). So we are naturally led to consider
closely the group Aut(H(n)) (3.6.7). We shall devote this section to investigating
some aspects of its structure. It will be convenient, especially in later sections, to
work as much as possible with regard to any n ≥ 1; but our main results here will
require n ≥ ph+1 (or at least n ≥ ph, granting (3.6.5)), so that height h makes
sense.

To begin, let n ≥ 1, and recall the schemes Aut(Tn)Fp
and (Ln)Fp

from §3.5
obtained by reducing Aut(Tn) (1.6.5) and Ln (2.2.1), respectively, mod p.

Lemma 3.7.1. Aut(H(n)) is canonically represented by a closed sub-group scheme
of Aut(Tn)Fp

.

Proof. Roughly, the point is just that Aut(H(n)) naturally sits inside Aut(Tn)Fp

as the stabilizer of H(n). Precisely, Aut(Tn)Fp
acts naturally on (Ln)Fp

by (2.2.2),
and we have a Cartesian square

Aut(H(n)) //

��

�

Aut(Tn)Fp

��

SpecFp
H(n)

// (Ln)Fp
,

where the bottom horizontal arrow is the classifying map determined by H(n) and
the right vertical arrow is defined on points by f 7→ f ·H(n). �

By (3.5.7) and (3.6.8), for n ≥ ph+1, the classifying stack B
(
Aut(H(n))

)
is an

open substack of a stack smooth of relative dimension −h over SpecFp. Hence

B
(
Aut(H(n))

)
is itself smooth of relative dimension −h over SpecFp. Hence it

natural to ask if Aut(H(n)) is smooth of dimension h over SpecFp.
We shall answer the question in the affirmative in (3.7.4) below. To prepare, let

n ≥ 1, and recall the A Tn
• -filtration on Aut(Tn) from (1.6.7). Let (A Tn

• )Fp
denote

the filtration on Aut(Tn)Fp
obtained by base change to Fp.

Definition 3.7.2. We define A H(n)

• to be the intersection filtration on Aut(H(n)):

A H(n)

i := Aut(H(n))×Aut(Tn)Fp
(A Tn

i )Fp
, i = 0, 1, . . . , n.

Concretely, A H(n)

0 = Aut(H(n)), and A H(n)

i is given on points by

A H(n)

i (S) :=

{
f ∈ AutΓ(S)(H

(n))

∣∣∣∣
f(T ) is of the form

T +ai+1T
i+1+ai+2T

i+2+ · · ·+anT
n

}
.

By (1.6.7) and (3.7.1), A H(n)

0 /A H(n)

1 embeds as a closed subscheme ofGm = Gm,Fp
,

and A H(n)

i /A H(n)

i+1 embeds as a closed subscheme of Ga = Ga,Fp
for i = 1, 2, . . . ,

n− 1.
Our main result for the section is following calculation of the successive quotients

of the A H(n)

• -filtration for n ≥ ph+1. Let l be the nonnegative integer such that
pl ≤ n < pl+1.
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Theorem 3.7.3. We have an identification of presheaves

A H(n)

i /A H(n)

i+1
∼=





µph−1, i = 0;

G
Frph

a , i = p− 1, p2 − 1, . . . , pl−h − 1;

Ga, i = pl−h+1 − 1, pl−h+2 − 1, . . . , pl − 1;

0, otherwise;

where µph−1 ⊂ Gm is the sub-group scheme of (ph − 1)th roots of unity, and

G
Frph

a ⊂ Ga is the sub-group scheme of fixed points for the phth-power Frobenius
operator.

In other words, for any Fp-scheme S, we have

µph−1(S) =
{
a ∈ Γ(S)× | aph−1 = 1

}
and GFrph

a (S) =
{
a ∈ Γ(S) | aph

= a
}
.

Hence µph−1 and G
Frph

a are respresented, respectively, by

SpecFp[T ]/(T ph−1 − 1) and SpecFp[T ]/(T ph

− T ).

Hence both µph−1 and G
Frph

a are finite étale groups over SpecFp.
Before proceeding to the proof of the theorem, let us first signal an immediate

consequence. We continue with n ≥ ph+1.

Corollary 3.7.4. Aut(H(n)) is smooth of dimension h over SpecFp.

Proof. By the theorem, Aut(H(n)) is obtained as an iterated extension of smooth

groups, so is smooth. Moreover, the A H(n)

• -filtration has precisely h successive
quotients of dimension 1, and all other successive quotients of dimension 0. So the
dimension assertion follows from [DG, III §3 5.5(a)]. �

We shall devote the rest of the section to the proof of (3.7.3). One could extract
the proof from a careful analysis of some of the statements and arguments in [L, §IV]
or in [F, I §3, III §2]. But, for sake of clarity, it seems preferable to give a reasonably
self-contained proof here. Our presentation has profited significantly from notes we
received from Spallone on a course of Kottwitz.

To prove (3.7.3), it will be somewhat more convenient to translate the problem
into one concerning endomorphisms of H(n), as opposed to automorphisms. Let
n ≥ 1.

Definition 3.7.5. We define End(H(n)) to be the presheaf of (noncommutative)
rings on (Sch)/Fp

End(H(n)) : S 7−→ EndΓ(S)(H
(n)) ∼= End(n-buds)(S)

(
TH(n)

n,S

)
.

Recall that the S-points of End(H(n)) are the truncated polynomials f(T ) ∈
Γn(S;T ) that “commute” with H(n) in the sense of (1.1.2). The ring structure on
points of End(H(n)) is described explicitly in terms of H(n) in (1.1.5).

Definition 3.7.6. For i = 0, 1, . . . , n, we denote by I H(n)

i the subpresheaf of

End(H(n)) defined on points by

I H(n)

i (S) :=

{
f ∈ EndΓ(S)(H

(n))

∣∣∣∣
f(T ) is of the form

ai+1T
i+1+ai+2T

i+2+ · · ·+anT
n

}
.
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One verifies immediately that I H(n)

i is a presheaf of 2-sided ideals in End(H(n))
for all i, and we have a decreasing filtration

End(H(n)) = I H(n)

0 ⊃ I H(n)

1 ⊃ · · · ⊃ I H(n)

n−1 ⊃ I H(n)

n = 0.

For any n ≥ 1, we can relate the I H(n)

• -filtration of End(H(n)) to the A H(n)

• -
filtration of Aut(H(n)) as follows. By (1.1.6), the map on points

f 7−→ id +H(n) f,

where id(T ) = T (1.1.5), defines a morphism of set -valued presheaves

(∗) I H(n)

i −→ A H(n)

i , 1 ≤ i ≤ n.

Lemma 3.7.7. The arrow (∗) is an isomorphism of presheaves of sets.

Proof. The inverse is given by addition with iH(n) (1.1.4). �

In a moment, we shall exploit the lemma to express the successive quotients of

the A H(n)

• -filtration in terms of the successive quotients of the I H(n)

• -filtration. But
we first need another lemma. Quite generally, let R be a possibly noncommutative
ring with unit, and let I ⊂ R be a 2-sided ideal such that 1 + I ⊂ R×.

Lemma 3.7.8.

(i) The natural map R×/(1 + I)→ (R/I)× is an isomorphism of groups.
(ii) Let J be a 2-sided ideal such that I2 ⊂ J ⊂ I. Then the map

(∗∗) i 7−→ 1 + i mod 1 + J

induces an isomorphism of groups I/J
∼
−→ (1 + I)/(1 + J).

Proof. (i) Immediate.
(ii) It plainly suffices to show that (∗∗) defines a group homomorphism I →

(1 + I)/(1 + J). That is, given i and i′ ∈ I, we must find j ∈ J such that
(1 + i+ i′)(1 + j) = (1 + i)(1 + i′). Take j := (1 + i+ i′)−1ii′. �

The two previous lemmas yield the following as an immediate consequence.

Lemma 3.7.9. The natural arrow

A H(n)

0 /A H(n)

1 = Aut(H(n))/A H(n)

1 −→
(
End(H(n))/I H(n)

1

)×
= (I H(n)

0 /I H(n)

1 )×

is an isomorphism of presheaves of abelian groups. For 1 ≤ i ≤ n − 1, the arrow
(∗) induces an isomorphism of presheaves of abelian groups

I H(n)

i /I H(n)

i+1
∼
−→ A H(n)

i /A H(n)

i+1 . �

This last lemma reduces (3.7.3) to the calculation of the successive quotients of

the I H(n)

• -filtration. To prepare, it will be convenient to formulate a few general
lemmas on homomorphisms between bud laws. We continue with n ≥ 1.

Let A be a ring, and fix n-bud laws F and G over A. Let f ∈ A[T ]/(T )n+1 have
0 constant term. We define ∂f ∈ A[T1, T2]/(T1, T2)

n+1 to measure the failure of f
to be a homomorphism F → G:

(†) (∂f)(T1, T2) := f
(
F (T1, T2)

)
−G

(
f(T1), f(T2)

)
.

In keeping with our notation for truncated bud and group laws (1.7.7), we write
f (m) for the image of f in A[T ]/(T )m+1, and (∂f)(m) for the image of ∂f in
A[T1, T2]/(T1, T2)

m+1, m ≤ n.
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As an easy first lemma, we shall consider the effect of perturbations to f on ∂f .
Let a ∈ A, and put g(T ) := f(T ) + aTm. Recall the polynomial Bm of (3.1.11).

Lemma 3.7.10. (∂g)(m) = (∂f)(m) + aBm.

Proof. Without loss of generality, we may assume m = n. Then we just compute

g
(
F (T1, T2)

)
= f

(
F (T1, T2)

)
+ aF (T1, T2)

n = f
(
F (T1, T2)

)
+ a(T1 + T2)

n

and

G
(
g(T1), g(T2)

)
= G

(
f(T1) + aT n, f(T2) + aT n

)
= G

(
f(T1), f(T2)

)
+ aT n

1 + aT n
2

and subtract. �

For the next two lemmas, assume m ≥ 2, and suppose that f (m−1) is a homo-
morphism F (m−1) → G(m−1), so that (∂f)(m−1) = 0. Recall the polynomial Cm of
(3.1.11).

Lemma 3.7.11. There exists a unique a ∈ A such that (∂f)(m) = aCm.

Proof. We shall show that (∂f)(m) is a homogenous SPC (3.1.9) of degree m and
appeal to (3.1.12). Without loss of generality, we may assume m = n. Since
F and G are commutative, it is clear that ∂f is symmetric. Since f (n−1) is a
homomorphism, it is clear that ∂f is homogenous of degree n. So we just have to
show that ∂f satisfies the cocycle condition (3.1.9C). We shall do so by exploiting
the associativity of F and G.

Replacing T2 by F (T2, T3) in (†), we obtain an equality of elements in the ring
A[T1, T2, T3]/(T1, T2, T3)

n+1,

(∂f)
(
T1, F (T2, T3)

)
= f

(
F

(
T1, F (T2, T3)

))
−G

(
f(T1), f

(
F (T2, T3)

))
.

Replacing f
(
F (T2, T3)

)
with G

(
f(T2), f(T3)

)
+ (∂f)(T2, T3) in the display, we ob-

tain

(∂f)
(
T1, F (T2, T3)

)
= f

(
F

(
T1, F (T2, T3)

))

−G
(
f(T1), G

(
f(T2), f(T3)

)
+ (∂f)(T2, T3)

)
.

Since ∂f is homogenous of degree n, the left-hand side of this last display is

(∂f)(T1, T2 + T3),

and the right-hand side is

f
(
F

(
T1, F (T2, T3)

))
−G

(
f(T1), G

(
f(T2), f(T3)

))
− (∂f)(T2, T3).

Analogously, replacing T1 by F (T1, T2) and T2 by T3 in (†), one obtains a second
equality in A[T1, T2, T3]/(T1, T2, T3)

n+1,

(∂f)(T1 + T2, T3) = f
(
F

(
F (T1, T2), T3

))

−G
(
G

(
f(T1), f(T2)

)
, f(T3)

)
− (∂f)(T1, T2).

Now subtract equations and use the associativity of F and G. �

We continue with a as in the previous lemma. Recall λ(m) from (3.1.11).
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Lemma 3.7.12. For any k ≥ 1,

(f (m) ◦ [k]F (m))(T ) = ([k]G(m) ◦ f (m))(T ) +
km − k

λ(m)
· aTm.

In particular, for k = p, m of the form pj, and A of characteristic p, we have

(f (pj) ◦ [p]F (pj))(T ) = ([p]G(pj) ◦ f
(pj))(T )− aTm.

Proof. The proof is entirely similar to that given in [L, Lemme 6] or in [F, III
§1 Lemma 4], but for convenience, we’ll write out the details. Without loss of
generality, we may assume m = n.

We induct on k. The assertion is clear for k = 1. So assume the assertion holds
for k. We have

(f ◦ [k + 1]F )(T ) = f
(
F

(
T, [k]F (T )

))

= G
(
f(T ), (f ◦ [k]F )(T )

)
+ (∂f)

(
T, [k]F (T )

)
(†).

Let us examine separately the two terms appearing in the last expression. We have

G
(
f(T ), (f ◦ [k]F )(T )

)
= G

(
f(T ), ([k]G ◦ f)(T ) + kn−k

λ(n) aT
n
)

(induction)

= G
(
f(T ), ([k]G ◦ f)(T )

)
+
kn − k

λ(n)
aT n

= ([k + 1]G ◦ f)(T ) +
kn − k

λ(n)
aT n.

Moreover,

(∂f)
(
T, [k]F (T )

)
= aCn

(
T, [k]F (T )

)
(3.7.11)

= aCn(T, kT ) (3.1.2)

= a
(k + 1)n − kn − 1

λ(n)
T n.

The lemma follows at once. �

We are now ready to compute the I H(n)

i /I H(n)

i+1 ’s. We denote by O = OFp
the

tautological ring scheme structure on A1
Fp

, and by OFrph the sub-ring scheme of O

of fixed points for the phth-power Frobenius operator:

OFrph
(S) =

{
a ∈ Γ(S)

∣∣ aph

= a
}
.

Quite as in (1.6.7), one verifies at once that the map on points

(‡) ai+1T
i+1 + · · ·+ anT

n 7−→ ai+1

specifies a monomorphism of presheaves of rings

I H(n)

0 /I H(n)

1 →֒ O, i = 0,

and a monomorphism of presheaves of abelian groups

I H(n)

i /I H(n)

i+1 →֒ Ga, 1 ≤ i ≤ n− 1.

Assume n ≥ ph+1, and again let l be the nonnegative integer such that pl ≤ n <
pl+1.
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Theorem 3.7.13. For 0 ≤ i ≤ n− 1, (‡) induces an identification of presheaves

I H(n)

i /I H(n)

i+1
∼=





OFrph , i = 0;

G
Frph

a , i = p− 1, p2 − 1, . . . , pl−h − 1;

Ga, i = pl−h+1 − 1, pl−h+2 − 1, . . . , pl − 1;

0, otherwise.

Proof. Let A be a ring of characteristic p, and let Ii := I H(n)

i (A), 0 ≤ i ≤ n. For
i 6= 0, p − 1, p2 − 1, . . . , pl − 1, we have Ii/Ii+1 = 0 by (3.1.3). So we are left to
compute the quotients for i of the form pj − 1.

As a first step, let f(T ) = a1T + · · ·anT
n be any endomorphism of H(n) over A.

Let AFrph := OFrph (A). Since f must commute with [p]H(n)(T ) = T ph

, we deduce
ai ∈ AFrph for iph ≤ n. In particular, the map (‡) carries Ii/Ii+1 into AFrph for
i = 0, p− 1, . . . , pl−h − 1, as asserted. So we are reduced to showing the following:

given apjT pj

∈ A[T ]/(T )n+1, with apj ∈ AFrph in case j ≤ l − h and no constraint

on apj in case j > l−h, we can add terms of degree > pj to obtain an endomorphism

of H(n).
We shall proceed by induction on the degree of the term to be added. We work

with ∂ (†) computed with regard to F = G = H(n). To begin, let f(T ) = apjT pj

.
Then

(∂f)(p
j)(T1, T2) = f

(
H(pj)(T1, T2)

)
−H(pj)

(
f(T1), f(T2)

)

= apj (T1 + T2)
pj

− apjT pj

1 − apjT pj

2

= 0.

Hence f defines an endomorphism of H(pj). We must now show that if g(T ) =

apjT pj

+ · · · + am−1T
m−1 defines an endomorphism of H(m−1), pj + 1 ≤ m ≤ n,

then we can always add a term of degree m to g to obtain an endomorphism of
H(m).

Case 1: m is not a power of p. By (3.7.11), (∂g)(m) = aCm for a unique
a ∈ A. Now, since A is of characteristic p and m is not a power of p, Cm is a unit
multiple of Bm over A. Hence by (3.7.10) we can find (a unique) am ∈ A such that
g(T ) + amT

m defines an endomorphism of H(m).
Note that if apj , . . . , am−1 ∈ AFrph , then am ∈ AFrph too, since H is defined over

Fp, A
Frph is a subring of A, and am is uniquely determined.

Case 2: m is a power of p. In this case Bm = 0 over A, so the method of
case 1 breaks down. But we claim that, in fact, g is already an endomorphism of
H(m). By (3.7.11) and (3.7.12), it suffices to show that g ◦ [p]H(m) = [p]H(m) ◦ g in
A[T ]/(T )m+1. We shall show that the stronger statement g ◦ [p]H(n) = [p]H(n) ◦ g
in A[T ]/(T )n+1 holds. We consider separately the subcases j ≤ l−h and j > l−h.
If j ≤ l − h, then recall apj ∈ AFrph . Hence by induction all the coefficients of g

lie in AFrph . Hence g commutes with [p]H(n) . If j > l − h, then the argument is
even easier: g ◦ [p]H(n) and [p]H(n) ◦ g both only involve terms of degrees ≥ pj+h.
So both are 0 in A[T ]/(T )n+1 by definition of l. �

At last we obtain the proof of (3.7.3).

Proof of (3.7.3). Clear from (3.7.9) and (3.7.13), noting for the i = 0 case that
µph−1 sits naturally inside OFrph as the subfunctor of units. �



42 BRIAN D. SMITHLING

Remark 3.7.14. One verifies immediately that the maps

A H(n)

i /A H(n)

i+1 −→

{
Gm, i = 0;

Ga, 1 ≤ i ≤ n− 1

induced by (1.6.7) and the maps

I H(n)

i /I H(n)

i+1 −→

{
O, i = 0;

Ga, 1 ≤ i ≤ n− 1

of the previous theorem are compatible with the identifications of (3.7.9).

4. The height stratification: formal Lie groups

We continue working with respect to fixed prime p.

4.1. The height stratification on the stack of formal Lie groups. In this
section we introduce the height stratification on the stack of formal Lie groups,
quite in analogy with the height stratification on Bn, n ≥ 1.

Let h ≥ 0. We denote by FL G≥h the full sub-fibered category of FL G
rendering the diagram

(∗)

FL G≥h //

��

FL G

��

B≥h
ph

// Bph

Cartesian; here, as usual, the right vertical arrow denotes truncation. Abusing
notation, we denote again by L the pullback to FL G of the line bundle L on
B1 (3.4.6). Similarly, we abusively denote by Lh the restriction of L to FL G≥h;
then Lh is canonically isomorphic to the pullback to FL G≥h of the line bundle Lh

on B≥h
ph (3.4.6). We abusively denote again by vh the section OFL G ≥h → L ⊗ph−1

h

over FL G≥h obtained by pulling back the section vh : O
B≥h

ph

→ L ⊗ph−1
h from

B≥h
ph (3.4.9).

The fibered category FL G≥h and the various sections vi are related in the
following simple way. Let X be a formal Lie group over the base scheme S.

Proposition 4.1.1. The following are equivalent.

(i) X is an object in FL G≥h.

(ii) The ph-bud X(ph) has height ≥ h.
(iii) For any n ≥ ph, the n-bud X(n) has height ≥ h.
(iv) X is an object in each of the successive zero loci (3.3.3) V (v0), V (v1), . . . ,

V (vh−1).

Proof. (3.4.4) and (3.4.13). �

Definition 4.1.2. X has height ≥ h it it satisfies the equivalent conditions of
(4.1.1).

Example 4.1.3. Quite as for buds (3.4.2), given a formal group law F over Γ(S),

the formal Lie group ÂF
S (1.3.3) has height ≥ h ⇐⇒ [p]F ∈ T ph

·Γ(S)[[T ]]. So our
terminology again comports with (3.1.4).
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Remark 4.1.4. Many of the above definitions are independent of fixed choices
we’ve made. For example, the proposition says that we could have just as well
defined FL G≥h by replacing the diagram (∗) with one in which ph is everywhere
replaced by any n ≥ ph. Up to canonical isomorphism, (3.4.8) says we could have
defined L as the pullback to FL G of the line bundle L on Bn, for any n ≥ 1;
and similarly for Lh, for any n ≥ ph. Analogously, (3.4.12) says that we could have
defined vh as the pullback of the section vh over B≥h

n , for any n ≥ ph.

Remark 4.1.5. Just as for buds, FL G≥0 = FL G , and FL G≥1 is the stack of
formal Lie groups over Fp-schemes.

Proposition 4.1.6. FL G≥h is a stack for the fpqc topology, and the inclusion
functor FL G≥h → FL G is a closed immersion.

Proof. The diagram (∗) is Cartesian. So the first assertions follows because Bph

(2.3.1), FL G (2.6.6), and B≥h
ph (3.4.14) are fpqc stacks. And the second assertion

follows because B≥h
ph → Bph is a closed immersion (3.4.14). �

Remark 4.1.7. As for buds, we obtain a decreasing filtration of closed substacks
FL G = FL G≥0 ! FL G≥1 ! FL G≥2 ! · · · . By contrast with the bud case
(3.4.4), the filtration for FL G is of infinite length.

4.2. The stack of height ≥ h formal Lie groups. In this section we collect some
characterizations of FL G≥h analogous to previous results on B≥h

n and FL G .
Let us first consider an analog to the description of B≥h

n in (3.5.1). Let U be
a universal (for Z(p)-algebras) formal group law over Z(p)[t1, t2, . . . ] as in (3.5.5).
Recall that, in the notation of (3.5.5), the reduction of U over the ring

Bh := Z(p)[t1, t2, . . . ]/(p, a1, . . . , ah−1) ∼= Fp[t1, t2, . . . ]/(a1, . . . , ah−1)

is a universal group law of height ≥ h, and Bh is a polynomial ring over Fp on the

images of the ti for i 6= p1− 1, p2− 1, . . . , ph−1− 1. Let Aut(Â)Fp
:= Aut(Â)⊗Fp,

with Aut(Â) as in (2.5.3). Just as in (3.5.1), we deduce the following.

Theorem 4.2.1. Aut(Â)Fp
acts naturally on SpecBh, and we have FL G≥h ≈

Aut(Â)Fp
\ SpecBh. �

In analogy with (2.6.8), let us next consider the relation between the stacks
FL G≥h and B≥h

n , n ≥ ph. By (3.4.4), we may form the limit lim
←−n≥ph

B≥h
n of the

B≥h
n ’s with respect to the truncation functors. By (4.1.1), truncation determines

an arrow

(∗) FL G≥h −→ lim
←−

n≥ph

B≥h
n .

As always, we emphasize that the limit is taken in the sense of bicategories; see the
appendix.

Theorem 4.2.2. The arrow (∗) is an equivalence of stacks.

Proof. Combine (2.6.8), (4.1.1), and (A.9.2). �
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4.3. The stratum of height h formal Lie groups I. In this section, in analogy
with §3.6, we begin to study the strata of the height stratification on FL G , or, in
other words, the notion of (exact) height for formal Lie groups. Let X be a formal
Lie group over the base scheme S.

Proposition 4.3.1. The following are equivalent.

(i) The ph+1-bud X(ph+1) has height h.
(ii) For any n ≥ ph+1, the n-bud X(n) has height h.
(iii) X is an object in the open complement of FL G≥h+1 in FL G≥h.

Proof. (3.6.2). �

Definition 4.3.2. X has height h, or exact height h, if it satisfies the equivalent
conditions of (4.3.1). We denote by FL G h the substack of FL G of formal Lie
groups of height h.

Example 4.3.3. Quite as for buds (3.6.3), if X = ÂF
S for the formal group law F

over Γ(S) (1.3.3), then the notion of height h for X recovers precisely that for F
(3.1.4).

Remark 4.3.4. The caution of (3.6.6) still applies: to say that a formal Lie group
has “height ≥ h” is not to say that it has “height h′ for some h′ ≥ h”.

Remark 4.3.5 (Relation to p-Barsotti-Tate groups). Our notion of height for
formal Lie groups is related to, but not strictly compatible with, the notion of
height for p-Barsotti-Tate, or p-divisible, groups. In rough form, the difference is
that (exact) height for formal Lie groups is a locally closed condition, whereas height
for Barsotti-Tate groups is a fiberwise condition. For example, if X is a formal Lie
group of height h in the sense of (4.3.2), then X is a Barsotti-Tate group of height h
in the sense of Barsotti-Tate groups. But the converse can easily fail. For example,

Ĝm is a Barsotti-Tate group of height 1 over any base scheme on which p is locally

nilpotent. But Ĝm has height 1 as a formal Lie group exactly when p is honestly 0.
Similar examples exist for any height h > 1. Let A be a ring and I ⊂ A a

nonzero nilideal such that B := A/I is of characteristic p. Let F be a formal group
law of height h over B. As A is necessarily a Z(p)-algebra, we may apply (3.5.5) to

lift F to a group law F̃ over A such that the coefficients in [p] eF (T ) of T p, T p2

, . . . ,

T ph−1

are any elements of I that we like. In particular, we can ensure that F̃ is not

of height ≥ h. But it is easy to verify that Â
eF
A (1.3.3) is a Barsotti-Tate group of

height h.

Remark 4.3.6 (Relation to p-typical formal group laws). Let us digress for a
moment to briefly discuss BP -theory and p-typical formal group laws. We refer to
[R1] for general background, especially to [R1, App. 2] for the relevant group law
theory. Recall that BP∗ and the ring W := BP∗[t0, t

−1
0 , t1, t2, . . . ] admit a natural

Hopf algebroid structure such that the associated internal groupoid in the category
of affine Z(p)-schemes

(∗) SpecW
//
// SpecBP∗

represents p-typical formal group laws and the isomorphisms between them. In
particular, letting X denote the stackification of (∗), there is a natural morphism
f : X → FL G ⊗Z(p), and one verifies just as in [N, 34(2)] that f is an equivalence.
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Hence the height stratification on FL G induces a stratification on X , or in other
words, a stratification on SpecBP∗ by invariant closed subschemes.

Now, recall that BP∗ ≃ Z(p)[u1, u2, . . . ], where for convenience we take the ui’s
to be the Araki generators and set u0 := p. Recall also Landweber’s ideals I0 := 0
and Ih := (u0, u1, . . . , uh−1), h > 0, in BP∗. Then for all h ≥ 0, the closed substack
FL G≥h⊗Z(p) in FL G ⊗Z(p) ≈X corresponds to the ideal Ih ⊂ BP∗; one may
deduce this essentially from Landweber’s classification of invariant prime ideals in
BP∗ [Lan1, 2.7; Lan2, 6.2], or in a more direct fashion from the formula [R1, A2.2.4]
(this formula is the only point where our particular choice of the Araki generators
enters). In particular, our notion of (exact) height agrees with Pribble’s [P, 4.5].
The identification of the height stratification and the Ih-stratification on X is also
noted in [N, §6 pp. 25–26]; one verifies immediately that Naumann’s definition of
the height stratification agrees with ours.

This said, let us note that our notion of height is not completely compatible with
the notion of height for BP∗-algebras in [HS, 4.1]. Namely, given a BP∗-algebra A,
consider the composite

SpecA −→ SpecBP∗ −→ FL G .

From the point of view of this paper, it would be reasonable to say that A is a
BP∗-algebra of height h if the displayed composite factors through FL G h. But,
as noted in [N, 24], A has height h in the sense of [HS] if it satisfies the strictly
weaker condition that h is the smallest nonnegative integer for which the composite
factors through the open substack FL G −FL G≥h+1 of FL G ([HS] defines A
to have height ∞ if the composite fails to factor through FL G −FL G≥h+1 for
any h).

We shall next formulate a characterization of FL G h analogous to (3.6.8). Recall
the formal group law H = Hh of (3.1.17).

Definition 4.3.7. We define Aut(H) to be the presheaf of groups on (Sch)/Fp

Aut(H) : S 7−→ AutΓ(S)(H) ∼= Aut(FLG)(S)

(
ÂH

S

)
.

Whereas in (3.6.8) we were led to consider torsors for the finite étale topology,
we shall now need to consider Aut(H)-torsors for the fpqc topology. Given a group
G over SpecFp, we write Bfpqc(G) for the stack over (Sch)/Fp

of G-torsors for the
fpqc topology.

Theorem 4.3.8. FL G h ≈ Bfpqc

(
Aut(H)

)
.

Proof. Essentially identical to the proof of (3.6.8). �

Remark 4.3.9. The statement of the theorem is not entirely sharp: by (3.1.18), it
would suffice to replace the fpqc topology by the topology on (Sch)/Fp

generated by
the Zariski topology and all maps SpecB → SpecA between affine schemes obtained
as a limit of surjective finite étale maps · · · → SpecB2 → SpecB1 → SpecA.

We shall study the group Aut(H) and its relation to the groups Aut(H(n)) for
varying n ≥ ph+1 in the next section.

We shall conclude this section by formulating another characterization of the
stack FL G h, this time the obvious analog of (4.2.2). By (3.6.2), we may form the
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limit lim
←−n≥ph+1

Bh
n of the Bh

n’s with respect to the truncation functors. By (4.3.1),

truncation determines an arrow

(∗∗) FL G h −→ lim
←−

n≥ph+1

Bh
n.

As always, we emphasize that the limit is taken in the sense of bicategories; see
the appendix. As in (4.2.2), only replacing the reference to (4.1.1) with (4.3.1), we
obtain the following.

Theorem 4.3.10. The arrow (∗∗) is an equivalence of stacks. �

4.4. Automorphisms and endomorphisms of formal Lie groups of height

h. Let h ≥ 1. Our result FL G h ≈ Bfpqc

(
Aut(H)

)
(4.3.8), with FL G h the

stratum in FL G of formal Lie groups of height h, leads us to consider closely
the Fp-group Aut(H) (4.3.7). We shall devote this section to investigating some

aspects of its structure and of its relation to the groups Aut(H(n)) (3.6.7), n ≥ 1.
We shall ultimately apply our final result of this section, (4.4.11), to obtain another
characterization of FL G h in §4.6.

Let us begin with the analog of (3.7.1) for Aut(H). Recall the Z-group Aut(Â)

(2.5.3), and let Aut(Â)Fp
:= Aut(Â) ⊗ Fp. Quite as in (3.7.1), we obtain the

following.

Lemma 4.4.1. Aut(H) is canonically represented by a closed sub-group scheme of

Aut(Â)Fp
. �

Quite as in §3.7, although we will ultimately be interested in automorphisms of
H , we shall accord the endomorphisms of H a more fundamental role.

Definition 4.4.2. We define End(H) to be the presheaf of (noncommutative) rings
on (Sch)/Fp

End(H) : S 7−→ EndΓ(S)(H) ∼= End(FLG)(S)

(
ÂH

S

)
.

The ring structure on points of End(H) is described explicitly in terms of H in
(1.1.5).

The I H(n)

• -filtration on End(H(n)) (3.7.6) admits a natural analog for End(H),
as follows.

Definition 4.4.3. For i = 0, 1, 2, . . . , we denote by I H
i the subpresheaf of End(H)

defined on points by

I H
i (S) :=

{
f ∈ EndΓ(S)(H)

∣∣∣∣
f(T ) is of the form

ai+1T
i+1 + (higher order terms)

}
.

Quite as for I H(n)

i , one verifies immediately that I H
i is a presheaf of 2-sided

ideals in End(H) for all i, and we have a decreasing filtration

End(H) = I H
0 ⊃ I H

1 ⊃ I H
2 ⊃ · · · ,

this time of infinite length.

We now wish to introduce the analog for Aut(H) of the A H(n)

• -filtration on

Aut(H(n)) (3.7.2). We could do so by mimicking the definition of the A H(n)

• -

filtration in the obvious way: there is a natural filtration on Aut(Â) in plain analogy

with (1.6.7), hence an induced filtration on Aut(Â)Fp
, hence an intersection filtra-

tion on Aut(H). Instead, we will just use directly the I H
• -filtration on End(H).
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Definition 4.4.4. We define A H
i to be the subpresheaf of End(H)

A H
i :=

{
Aut(H), i = 0

T +H I H
i , i = 1, 2, . . . .

Concretely, reasoning as in (3.7.7), A H
i is given on points by

A H
i (S) :=

{
f ∈ AutΓ(S)(H)

∣∣∣∣
f(T ) is of the form

T + ai+1T
i+1 + (higher order terms)

}
.

It is immediate that A H
i is a normal subgroup in Aut(H) for all i, and we have a

decreasing filtration

Aut(H) = A H
0 ⊃ A H

1 ⊃ A H
2 ⊃ · · · .

Let us now turn to the relation between End(H) and the End(H(n))’s, and
between Aut(H) and the Aut(H(n))’s. For any m ≥ n ≥ 1, truncation of H
induces a commutative diagram of presheaves of rings

(∗)

End(H)

!!C
CC

CCC

}}{{
{{

{{

End(H(m)) // End(H(n)).

Proposition 4.4.5. For all i ≥ 0, the diagram (∗) induces

(i) I H
i
∼
−→ lim
←−n≥1

I H(n)

i , where we take I H(n)

i := 0 for i ≥ n; and

(ii) A H
i
∼
−→ lim
←−n≥1

A H(n)

i , where we take A H(n)

i := 1 for i ≥ n.

Moreover,

(iii) I H
i
∼
−→ lim
←−n≥i

I H
i /I H

n and

(iv) A H
i
∼
−→ lim
←−n≥i

A H
i /A H

n .

In particular, End(H) (resp. Aut(H)) is complete and separated with respect to the
I H
• - (resp. A H

• -) topology.

Proof. Before anything else, it is clear from the definitions that truncation carries

I H
i and I H(m)

i into I H(n)

i , m ≥ n, so that the limit and arrow in (i) are well-
defined; and analogously for (ii).

(i) The case i = 0 is clear because ÂH (1.3.3) is ind-infinitesimal: precisely, use
(2.6.8), (A.6.2), and (A.4.4). The case i > 0 is then clear because, for all n ≥ i, the

inverse image of I H(n)

i in End(H) is I H
i .

(ii) Immediate from (i) and, when i > 0, from (3.7.7).
(iii) Immediate from (i), since for n ≥ i, I H

i /I H
n identifies with the image of

I H
i in I H(n)

i .
(iv) Immediate from (ii), since for n ≥ i, A H

i /A H
n identifies with the image of

A H
i in A H(n)

i . �

As a consequence of the proposition and of our earlier calculation of the the

successive quotients of the I H(n)

• -filtration (3.7.13), we now obtain the successive
quotients of the I H

• -filtration. For any i and any n ≥ i+1, we have monomorphisms

(∗∗) I H
i /I H

i+1 →֒ I H(n)

i /I H(n)

i+1 →֒

{
O, i = 0;

Ga, i > 0;
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plainly the composite is independent of the choice of n.

Corollary 4.4.6. The diagram (∗∗) induces an identification of presheaves

I H
i /I H

i+1
∼=





OFrph , i = 0;

G
Frph

a , i = p− 1, p2 − 1, p3 − 1, . . . ;

0, otherwise.

Proof. Fix i. For any n ≥ i+ 1, we have an exact sequence of presheaves

0 −→ I H(n)

i+1 −→ I H(n)

i −→ I H(n)

i /I H(n)

i+1 −→ 0.

It follows from (3.7.13) that

• (I H(n)

i+1 )n≥i+1 satisfies the Mittag-Leffler condition as a diagram of pre-
sheaves of abelian groups; and

• as n increases, I H(n)

i /I H(n)

i+1 is eventually constant of the asserted value.

Now take the limit over n and use (4.4.5). �

In an entirely similar fashion, using (3.7.3) in place of (3.7.13), and using the
Mittag-Leffler condition for not-necessarily-abelian groups, we obtain the successive
quotients of the A H

• -filtration.

Corollary 4.4.7. We have an identification of presheaves

A H
i /A H

i+1
∼=





µph−1, i = 0;

G
Frph

a , i = p− 1, p2 − 1, p3 − 1, . . . ;

0, otherwise. �

In the rest of the section we shall study the following quotient groups, which
appear in (4.4.5), and their relation to the End(H(n))’s and Aut(H(n))’s.

Definition 4.4.8. We define E H
n to be the presheaf quotient ring End(H)/I H

n ,
and U H

n to be the subpresheaf of units in E H
n .

In other words, by (3.7.8), U H
n
∼= Aut(H)/A H

n .

Remark 4.4.9. By (4.4.6) and (4.4.7), E H
n and U H

n can be obtained from finitely
many iterated extensions of finite étale groups. Hence both are finite étale over
SpecFp. In fact, it is easy to write down explicit representing schemes. To fix
ideas, consider E H

n . For all i ≥ 0, the exact sequence of presheaves

0 −→ I H
i+1 −→ I H

i
can
−−→ I H

i /I H
i+1 −→ 0

has representable cokernel. Hence the quotient map “can” admits a section in the
category of set-valued presheaves. Hence I H

i ≃ I H
i+1 × (I H

i /I H
i+1) as presheaves

of sets. Now, the possible nontrivial values of I H
i /I H

i+1, namely OFrph and G
Frph

a ,

both have underlying scheme SpecFp[T ]/(T ph

− T ). Hence, letting l denote the
integer such that pl ≤ n < pl+1, we deduce that E H

n is representable by

(♯) SpecFp[T0, . . . , Tl]/(T
ph

0 − T0, . . . , T
ph

l − Tl).

We can even specify a natural representation: S-points of (♯) are canonically iden-

tified with ordered (l + 1)-tuples of elements a ∈ Γ(S) satisfying aph

= a, and we
can take the map from E H

n to (♯) specified on points by sending the class of f(T )

to the coefficients of T , T p, . . . , T pl

.
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Similarly, U H
n is representable by

SpecFp[T0, T
−1
0 , T1, . . . , Tl]/(T

ph

0 − T0, . . . , T
ph

l − Tl).

Remark 4.4.10. Let us digress for a moment to make a remark on the U H
n ’s. Let

D denote the central division algebra over Qp of dimension h2 and Hasse invariant
1
h . Let OD denote the maximal order in D. Then a classical theorem of Dieudonné
[D, Théorème 3] and Lubin [Lub, 5.1.3] in the theory of formal group laws asserts
that OD ≃ EndF

ph
(H) as topological rings, where EndF

ph
(H) has the I H

• (Fph)-

topology; precisely, one has prOD ≃ I H
prh−1(Fph) for all r ≥ 0. Hence O×D ≃

AutF
ph

(H) ∼= lim
←−n

U H
n (Fph) as pro-finite groups.

The finite algebraic group U H
n and the abstract finite group U H

n (Fph) are closely
related: indeed, the former is a twist over SpecFp of the latter. Precisely, for any
abstract groupG and ring A, write GA for the corresponding constant group scheme
over SpecA. Then U H

n is not constant over SpecFp, but it becomes isomorphic to(
U H

n (Fph)
)

F
ph

after the base change SpecFph → SpecFp, as we see very explicitly

from (4.4.9).

Our work so far furnishes a number of immediate relations between the E H
n ’s

and the End(H(n))’s, and between the U H
n ’s and the Aut(H(n))’s. To fix ideas,

let us consider the E H
n ’s and the End(H(n))’s. For example, for all n ≥ 1, E H

n is
identified with the image of End(H) in End(H(n)). And by (4.4.5), the E H

n ’s and the
End(H(n))’s have the same limit, namely End(H), endowed with the same topology.
Our final goal for the section will be to show that a yet stronger statement holds:
namely, that the E H

n ’s and the End(H(n))’s determine isomorphic pro-objects ; and
similarly for the U H

n ’s and the Aut(H(n))’s.
Precisely, let “ lim

←−
”
n

E H
n be the pro-ring scheme obtained from the diagram

· · · −→ E H
3 −→ E H

2 −→ E H
1 ,

and “ lim
←−

”
n

End(H(n)) be the pro-ring scheme obtained from the diagram

· · · −→ End(H(3)) −→ End(H(2)) −→ End(H(1)).

The natural inclusions E H
n →֒ End(H(n)) for n ≥ 1 plainly determine a morphism

of pro-objects

α : “ lim
←−

”
n

E H
n −→ “ lim

←−
”

n

End(H(n)).

We shall show that α is an isomorphism by exhibiting an explicit inverse β. To
define β, we must define βn : “ lim

←−
”
m

End(H(m)) → E H
n for each n ≥ 1. For this,

let l be the integer such that pl ≤ n < pl+1, and take any m ≥ pl+h. Consider the
natural map

(♭) End(H(m)) −→ End(H(n))

induced by truncation. By (3.7.13), (4.4.6), and choice of m, the image of (♭) in
End(H(n)) identifies with E H

n . Hence (♭) induces “ lim←−”
m

End(H(m)) → E H
n , which

we take as the desired βn. It is clear that the βn’s are compatible as n varies, so
that we obtain the desired β.

Analogously, we may form the pro-algebraic groups

“ lim
←−

”
n

U H
n and “ lim

←−
”

n

Aut(H(n)),
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and we obtain morphisms

“ lim
←−

”
n

U H
n

α′

//

β′
oo “ lim

←−
”

n

Aut(H(n)).

Theorem 4.4.11. The morphisms α and β (resp., α′ and β′) are inverse isomor-
phisms of pro-objects.

Proof. Everything is elementary from what we’ve already said. �

4.5. Functoriality of quotient stacks. In the next section we shall need to in-
terpret (4.4.11) in terms of the classifying stacks B(Un) and B

(
Aut(H(n))

)
. We

shall now pause a moment to record the following fact for use then: let C be a site,
and let D denote the category of paris (G,X), where X is a sheaf on C and G is
a group sheaf on C acting on X (on the left, say). Then passing to the quotient
stack defines a morphism (in the sense of bicategories; see §A.2) from D to the
2-category of stacks over C .

Roughly, the essential observation is simply that stackification defines a bicate-
gory morphism Fib(C )→ St(C ). More to the point, note that we have a canonical
2-functor D → Fib(C ) sending (G,X) to the presheaf of groupoids

G×X
prX //

a
// X,

where a denotes the action map. Hence the result of composing with stackification
is to send (G,X) 7→ G\X .

In particular, taking X to be the sheaf with constant value {∗}, we see that
G 7→ B(G) defines a morphism from group sheaves on C to stacks.

4.6. The stratum of height h formal Lie groups II. In this section we apply
the work of the previous two sections to give another characterization of the stack
FL G h of formal Lie groups of height h, h ≥ 1. Recall the algebraic groups U H

n ,
n ≥ 1, of (4.4.8).

Theorem 4.6.1. FL G h ≈ lim
←−
n

Bfét(U
H

n ).

Proof. The proof just consists of stringing together some of our previous results.
By §4.5 and (A.8.2), the isomorphism of pro-objects

“ lim
←−

”
n

Aut(H(n))
∼
−→ “ lim

←−
”

n

U H
n

from (4.4.11) induces an equivalence of stacks

lim
←−
n

Bfét

(
Aut(H(n))

) ≈
−→ lim
←−
n

Bfét(U
H

n ).

By (3.6.8), we have an equivalence Bh
n ≈ Bfét

(
Aut(H(n))

)
for n ≥ ph+1, plainly

compatible with truncation on the Bh
n side and with the transition maps induced

by “ lim←−”
n

Aut(H(n)) on the Bfét

(
Aut(H(n))

)
side. Now use (4.3.10). �

Remark 4.6.2. One may consider the equivalences

Bfpqc

(
Aut(H)

)
≈ FL G h ≈ lim

←−
n

Bfét(U
H

n )
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combined from (4.3.8) and (4.6.1) to be a stack analog of the theorem O×D ≃
AutFq

(H) discussed in (4.4.10). Indeed, U H
n becomes constant after the base

change SpecFph → SpecFp, and we obtain equivalences over Fph

Bfpqc

(
Aut(H)F

ph

)
≈ lim
←−
n

B
(
(U H

n )F
ph

)
≈ lim
←−

B(O×D/N),

where the limit on the right runs through the open normal subgroups N of O×D .

5. Valuative criteria

In this section we shall conduct a basic investigation of some properties of the
stacks FL G and Bn, n ≥ 1, related to valuative criteria. As in previous sections,
we work with the notion of height relative to fixed prime p.

Theorem 5.1. Bn is universally closed over SpecZ, and for all h ≥ 1 and n ≥ ph,
B≥h

n is universally closed over SpecFp.

Proof. The proof is the same in all cases, so let’s just consider Bn over SpecZ. We
apply the valuative criterion in [LMB, 7.3]. Let O be a valuation ring and K its
field of fractions. Let X be an n-bud over K. Then X admits a coordinate, so we
may assume X is given by a bud law

F (T1, T2) = T1 + T2 +
∑

2≤i+j≤n

aijT
i
1T

j
2 , aij ∈ K.

For changes of coordinate of the form f(T ) = λT for nonzero λ ∈ K, we obtain

f
[
F

(
f−1(T1), f

−1(T2)
)]

= T1 + T2 +
∑

2≤i+j≤n

aijλ
1−i−jT i

1T
j
2 .

So, by taking λ of sufficiently negative valuation, we see that F is K-isomorphic to
a bud law defined over O. �

Remark 5.2. Bn is not proper over Z because it is not separated. Indeed, let O
be a valuation ring with fraction field K. Then the natural functor

Bn(O) −→ Bn(K)

is faithful but not full. For example, for the additive n-bud G
(n)
a (1.7.6) we have

AutO(G(n)
a )  AutK(G(n)

a ),

since the latter contains automorphisms of the form f(T ) = λT for λ of nonzero
valuation.

Similarly, B≥h
n is not separated over Fp.

Example 5.3. The following may be taken as an exhibition of the non-separ-
atedness of Bn and of FL G . Let O be a DVR with uniformizing element π and
residue field of positive characteristic. Then the group law F (T1, T2) := T1 + T2 +
πT1T2 determines a formal Lie group over Spec O. Let f(T ) := πT . Then, over the
generic point η, we have

f
[
F

(
f−1(T1), f

−1(T2)
))

] = T1 + T2 + T1T2.

Hence f specifies an isomorphism ÂF
η
∼
−→ Ĝm. But Ĝm is certainly not isomorphic

to ÂF over Spec O, since ÂF
O reduces to Ĝa at the closed point. Hence Ĝm admits

nonisomorphic extensions from the generic point to Spec O.
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The failure of Bn and of B≥h
n to be separated prevents one from concluding

formally that the valuative criterion used in the proof of (5.1) holds for FL G and
for FL G≥h, respectively. Nevertheless, these stacks do satisfy a kind of “formal
universal closedness”, in the following sense.

Theorem 5.4. Let O be a valuation ring with field of fractions K.

(i) If K has characteristic 0, then FL G (O)→ FL G (K) is essentially sur-
jective.

(ii) If K has characteristic p and is separably closed, then FL G≥h(O) →
FL G≥h(K) is essentially surjective.

Proof. (i) As is well-known, over a Q-algebra, every formal group law is isomorphic
to the additive law.

(ii) By Lazard’s theorem [L, Théorème IV], formal group laws over separably
closed fields of characteristic p are classified up to isomorphism by their height.
Now use that group laws of every height are defined over Fp, hence over O. �

Our remarks in (5.2) suggest that the failure of B≥h
n to be separated is tied to

the additive n-bud, which has “height∞”. So it is natural to ask if the stratum Bh
n

is separated. But the answer here is also negative: by (3.6.8), (3.7.1), and (3.7.4),
Bh

n is the classifying stack of a group Aut(H(n)) which is positive dimensional and
affine, so that Aut(H(n)) is not proper, so that B

(
Aut(H(n))

)
is not separated

[LMB, 7.8.1(2)]. There is, however, a positive result when we take the limit over n.

Theorem 5.5. Let O be a valuation ring and K its field of fractions. Then
FL G h(O)→ FL G h(K) is fully faithful for all h ≥ 1.

Proof. Of course, the assertion only has content when charK = p, since otherwise
FL G h(O) = FL G h(K) = ∅. So assume charK = p. By (4.6.1), FL G h ≈
lim
←−n

Bfét(U H
n ), where U H

n is the finite étale group scheme over Fp of (4.4.8). In

particular, U H
n is proper. Hence Bfét(U H

n ) is a separated algebraic stack over Fp

[LMB, 7.8.1(2)]. Hence B(U H
n )(O) → B(U H

n )(K) is fully faithful. Now use that
a limit of fully faithful maps is fully faithful (A.3.5). �

Remark 5.6. As noted in the introduction, when O is a discrete valuation ring,
(5.5) is a special case of de Jong’s theorem that, when charK = p, the base change
functor

(∗)

{
p-divisible groups and

homomorphisms over O

}
−→

{
p-divisible groups and

homomorphisms over K

}

is fully faithful [dJ, 1.2]. (Tate proved that (∗) is fully faithful when charK = 0 [T,
Theorem 4].) Note that (5.5) only asserts bijections between Isom sets of objects,
not Hom sets, as in de Jong’s theorem. But it appears that the methods used
to prove (5.5) extend to give bijections between Hom sets, provided one considers
stacks of categories, not just stacks of groupoids.

A. Appendix

This appendix is devoted to some of the basic aspects of limits in 2-categorical
contexts; or more precisely, to limits in bicategories. From the point of view of
general bicategory theory, the applications we shall have in the main body are all
of a rather simple sort, and it would doubtless require less labor on the whole to
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treat them in a more ad hoc fashion as they arise. But we believe that bicategories
afford a convenient and natural setting in which to understand many of the various
notions at play, and we have chosen to take a little time to work through some of
the foundations.

Almost everything we shall discuss is probably well-known, but for some of the
material — notably that in §§A.6–A.9 — we have failed to find suitable references.
We extend our apologies to those whose work we have overlooked.

We have chosen to systematically ignore certain foundational set-theoretic issues
typically resolved through consideration of universes or of regular cardinals.

A.1. Bicategories. A bicategory is a categorification of an (ordinary) category.
We shall decline to recall the precise definition; see, for example, [CWM, XII §6],
[Bo, 7.7.1], or — the original reference — [Bé, §1] for complete details. Let us
instead content ourselves with a few informal remarks. A bicategory consists of
objects; morphisms between objects, called 1-cells; and morphisms between 1-cells
with common source and target, called 2-cells. The generalization from categories
to bicategories can be understood to a large extent in terms of the familiar gener-
alization from sets to categories. In an ordinary category, morphisms A→ B form
a set Hom(A,B); whereas in a bicategory, 1-cells A → B and the 2-cells between
them form a category Hom(A,B). In an ordinary category, composition is specified
by a function Hom(A,B) × Hom(B,C) → Hom(A,C); whereas in a bicategory,
composition is a functor Hom(A,B) × Hom(B,C) → Hom(A,C). In an ordinary
category, associativity is expressed as an equality of functions

(†) Hom(A,B)×Hom(B,C)× Hom(C,D)
//
// Hom(A,D).

In a bicategory, the arrows in (†) become functors between categories. But in cate-
gory theory, it is typically unnatural to demand that two functors be equal on the
nose. A better notion of sameness is that the functors be naturally isomorphic. So
in a bicategory, the functors in (†) agree up to specified natural isomorphism; that
is, the isomorphism is specified as part of the data of the bicategory. Similarly, each
objectC in a bicategory is equipped with a distinguished 1-cell idC ∈ ob Hom(C,C),
but left and and right composition with idC is the identity functor only up to re-
spective specified “left identity” and “right identity” natural isomorphisms. More-
over, the associativity and identity isomorphisms are not taken to be arbitrary,
but are themselves subject to natural coherence constraints. Philosophically, one
may view the associativity and identity isomorphisms as “canonical”: the coher-
ence constraints ensure that all possible ways to use the associativity and identity
isomorphisms to obtain a 2-cell between given 1-cells yield a common result.

Remark A.1.1. A bicategory with strict associativity and strict identity 1-cells is
a 2-category. Many examples of honest 2-categories occur in practice, e.g. (Cat).

Remark A.1.2. From some points of view, it would be more natural to use the
term “2-category” in place of “bicategory”; under such usage, one would then refer
to the objects described in (A.1.1) as “strict” 2-categories. But we shall defer to the
now well-established conventions of category theory and use “2-category” for the
strict notion and “bicategory” for the more general, “up-to-isomorphism” notion.

Remark A.1.3. We shall often refer to ordinary categories as 1-categories. Just
as a set may be regarded as a category in which all morphisms are identities, a
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1-category may be regarded as a bicategory, and indeed 2-category, in which all
2-cells are identities.

A 1-cell f : A → B in a bicategory is fully faithful if for every object C, the
natural functor

Hom(C,A)
f∗
−→ Hom(C,B)

is fully faithful. In the case of the bicategory (Cat), we recover the usual notion of
a fully faithful functor between 1-categories.

A 1-cell f : A → B in a bicategory is an equivalence if there exists a 1-cell
g : B → A such that gf ≃ idA and fg ≃ idB. Equivalently, f is an equivalence
⇐⇒ for every object C, the natural functor

Hom(C,A)
f∗
−→ Hom(C,B)

is an equivalence of categories ⇐⇒ for every object C, the natural functor

Hom(B,C)
f∗

−→ Hom(A,C)

is an equivalence of categories.
An object A in a bicategory is groupoidal if for every object C, Hom(C,A) is a

groupoid. In (Cat), the groupoidal objects are precisely the groupoids.
For any bicategory C , one obtains a bicategory C opp in a natural way by revers-

ing 1-cells. There are two other notions of “opposite”: one may reverse just the
2-cells, or the 1- and 2-cells simultaneously. We shall have no use for these latter
two.

A.2. Morphisms of bicategories. Part of the philosophy of category theory is
that morphisms between mathematical objects are just as important as, if not more
than, the objects themselves. So we shall now spend a few words on morphisms
between bicategories. As in the previous section, we shall conduct the discussion
at an informal level and leave precise details to the references. Let I and C and
be bicategories.

In rough form, a morphism, or diagram, F : I → C consists of

• an assignment on objects obI → ob C ; and
• for every pair i, j ∈ ob I , a functor HomI (i, j)→ HomC (Fi, F j),

compatible with identity 1-cells and composition of 1-cells up to specified coherent
invertible 2-cells. We shall decline to make “coherent” more precise; see [Bé, 4.1]
for the full definition.

Remark A.2.1. Our notion of morphism is often called “homomorphism” in the
literature; see e.g. [Bé, 4.2]. More generally, one may consider a notion in which
assignment of 1-cells is compatible with identities and composition only up to not-
necessarily-invertible coherent 2-cells: it is this that many authors call “morphism”,
whereas we would call it lax morphism. The lax morphisms occupy an important
place in the theory, but we will not have occasion to consider them further.

Example A.2.2 (Corepresentable and representable morphisms). For each C ∈
obC , hC := HomC (C,−) defines a morphism

C // (Cat)

D � // HomC (C,D)
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in a natural way. We call hC the morphism corepresented by C. Similarly, hC :=
Hom(−, C) defines a morphism C opp → (Cat); hC is the morphism represented by
C.

Remark A.2.3. When I is a 1-category, a bicategory morphism I → C is
essentially a pseudofunctor as defined in [SGA1, VI §8] (strictly speaking, [SGA1]
treats the case C = (Cat), but the modifications needed for general C are slight).
In the main body, we shall only encounter morphisms for which I is a 1-category,
so let us give a more explicit description in this case. Such a morphism F : I → C
consists of the data

• for every object i in I , an object Fi in C ;
• for every morphism µ : i→ j in I , a 1-cell Fµ : Fi→ Fj in C ;
• for every i ∈ obI , an invertible 2-cell χi : F idi

∼
−→ idFi in C ; and

• for every composition i
µ
−→ j

ν
−→ k in I , an invertible 2-cell

χν,µ : F (νµ)
∼
−→ (Fν)(Fµ)

in C .

These data are subject to natural coherence conditions expressing left and right
identity and associativity constraints on the χ’s. We shall decline to write out the
constraints precisely.

In practice, the χ’s typically arise as canonical isomorphisms. So, to simplify
notation, we often just write same symbol “can” in place of the various χ’s.

When C is a 2-category and one wishes to construct a morphism into C , it can
often be arranged that F idi = idFi and χi is the identity 2-cell for each i ∈ ob I .

Remark A.2.4. Morphisms of bicategories carry equivalences of objects to equiv-
alences. A morphism of bicategories is itself called an equivalence if it is surjective
on equivalence classes of objects and induces equivalences on all Hom categories.

Remark A.2.5. As in (A.1.2), there is a reasonable case for calling a morphism of
bicategories a “2-functor”. But we shall again defer to standard usage in category
theory and reserve “2-functor” for a morphism between 2-categories which is strictly
compatible with composition and with identities.

Just as functors between 1-categories admit natural transformations between
them, so do morphisms between bicategories admit arrows, which we call just
transformations, between them. In rough form, if F , G : I → C are bicategory
morphisms, then a transformation α : F → G consists of a 1-cell αi : Fi → Gi in
C for each i ∈ ob I , compatible with the definitions of F and G on 1-cells up to
specified coherent invertible 2-cells.

Remark A.2.6. We would obtain the notion of lax transformation by requiring
compatibility only up to not-necessarily-invertible coherent 2-cells. Some authors
use “transformation” for our notion of lax transformation, and “strong transforma-
tion” for our notion of transformation. As for lax morphisms between bicategories,
we shall not have occasion to consider lax transformations further.

There is one further notion of arrow to consider, new to the setting of bicate-
gories: if α, β : F → G are transformations, then a modification ξ : α→ β consists
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of a (not-necessarily-invertible) 2-cell

Fi Gi

αi

%%

βi

99
ξi

��

in C for each i ∈ ob I , subject to a natural coherence condition.
Just as functors from one category to another and the natural transformations

between these functors are naturally organized into a category, the bicategory mor-
phisms, transformations, and modifications are naturally organized as the respective
objects, 1-cells, and 2-cells of a bicategory Hom(I ,C ). When C is a 2-category,
so is Hom(I ,C ).

Remark A.2.7. Let F , G : I → C be morphisms. When I and C are 1-
categories, it is a familiar fact that a natural transformation F → G is an iso-
morphism exactly when it is an objectwise isomorphism, i.e. when Fi → Gi is an
isomorphism for all i ∈ obI . Analogously, when I and C are arbitrary bicate-
gories, a transformation F → G is an equivalence exactly when it is an objectwise
equivalence.

Remark A.2.8 (Yoneda’s lemma). Yoneda’s lemma admits the following formula-
tion in the setting of bicategories: for every object C in C and bicategory morphism
F : C opp → (Cat), the natural functor HomHom(C ,(Cat))(hC , F )→ FC is an equiv-

alence of categories. The analogous statement holds for hC .

Remark A.2.9 (Diagonal morphism). There is a canonical morphism of bicate-
gories C → C I := Hom(I ,C ), called the diagonal and denoted ∆I ,C or often
just ∆, which we now describe.

As a warm-up, let us review the diagonal in the setting of 1-categories I and
C ; see e.g. [CWM, III §3]. The diagonal is defined on each object C in C by taking
∆C to be the functor I → C with constant value C on objects and constant value
idC on morphisms. The diagonal is defined on morphisms in the evident way.

When I and C are bicategories, the diagonal is defined quite analogously. For
each C ∈ ob C , there is a natural morphism I → C sending all objects to C,
all 1-cells to idC , and all 2-cells to ididC

; this defines ∆ on objects. There is then
an evident way to define ∆ on 1-cells and 2-cells in C , and ∆ admits a natural
structure of bicategory morphism C → Hom(I ,C ).

A.3. Limits in bicategories. Let C be a 1-category. Informally, the limit of a
diagram in C is an object L in C with the property that, for each object C in C , to
give a morphism from C to L is to give a family of morphisms from C, one to each
object in the diagram, compatible with the transition morphisms in the diagram.

More precisely, let us say that the diagram in C is given by an “index” category
I and a functor F : I → C . Then a limit of F is a pair (L,α), where L ∈ obC
and α is a natural transformation ∆L → F (A.2.9), with the property that, for
each object C in C , the composition

HomC (C,L)
∆
−→ HomHom(I ,C )(∆C,∆L)

α∗−→ HomHom(I ,C )(∆C,F )

is a bijection of sets. As is standard, we write lim
←−

F for L and typically omit α

from the notation. By Yoneda’s lemma, the pair (lim
←−

F, α) is well-defined up to
canonical isomorphism.
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The generalization to bicategories is straightforward. Let F : I → C be a
morphism of bicategories. Again, recall the diagonal ∆ of (A.2.9).

Definition A.3.1. A limit of F is a pair (L,α), where L ∈ ob C and α is a
transformation ∆L → F , with the property that, for each object C in C , the
composition of functors

HomC (C,L)
∆
−→ HomHom(I ,C )(∆C,∆L)

α∗−→ HomHom(I ,C )(∆C,F )

is an equivalence of 1-categories.

As for limits in 1-categories, we write lim←−F for L and typically omit α from
the notation. It is sometimes convenient to denote the limit more informally by
lim
←−i∈I

Fi or by lim
←−i

Fi. By Yoneda’s lemma, the pair (lim
←−

F, α) is well-defined up

to equivalence.

Remark A.3.2. Of course, if (lim
←−

F, α) is a limit of F , then we obtain a “pro-
jection” 1-cell pri := αi : lim

←−
F → Fi for each i ∈ ob I . As i varies, the pri’s

are compatible with the Fµ’s, µ ∈ morI , in the precisely the sense that α is a
transformation ∆ lim

←−
F → F .

Remark A.3.3. What we have called “limit” is usually called “bilimit” in the
categorical literature. Consider the case that I and C are 2-categories and F is a
2-functor. Then, forgetting structure, F provides a functor between the underlying
1-categories. But the limit of F in the 1-categorical sense and the limit of F
in the sense of (A.3.1) need not agree, even when I is a 1-category; see e.g.
(A.4.2). Traditionally, “bilimit” has been used for limits in the sense of (A.3.1),
whereas “limit” has been reserved for the 1-categorical notion. But in the setting
of bicategories, (A.3.1) is the more fundamental notion. So we feel it deserves the
plainer terminology, and it is that we shall call “limit”. When we need to distinguish
the 1-categorical notion, we shall refer to it as “1-limit” and denote it 1- lim←−F .

Note that when I is a 2-category and C is a 1-category, the notions of limit of
F and of 1-limit of F are the same. In particular, (A.3.1) recovers the usual notion
of limit in the case of a functor between 1-categories.

Remark A.3.4. Of course, the limit of a given F : I → C may or may not exist.
At the other extreme, suppose that C admits all I -indexed limits, that is, that
every morphism I → C admits a limit. Then, choosing a limit (lim

←−
F, α) for

each F : I → C , and using the universal property of a limit, it is straightforward
(though tedious) to verify that passing to the limit admits a structure of bicategory
morphism Hom(I ,C )→ C , right adjoint to ∆ (in the sense of bicategories).

Remark A.3.5. Let G : I → C be another morphism and α : F → G a trans-
formation. It follows immediately from the definitions that if α is fully faithful as
a 1-cell in Hom(I ,C ) and lim

←−
F and lim

←−
G exist, then the natural induced 1-cell

lim
←−

F → lim
←−

G (well-defined up to isomorphism) in C is fully faithful. Moreover,
there is the following easy criterion for α to be fully faithful, often satisfied in
practice:

αi is fully faithful in C for all i ∈ obI =⇒ α is fully faithful.

Remark A.3.6. It follows immediately from the definitions that if F is a groupoidal
object in Hom(I ,C ) and lim

←−
F exists, then lim

←−
F is groupoidal in C . Moreover,
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there is the following easy criterion for F to be groupoidal, often satisfied in prac-
tice:

Fi is groupoidal in C for all i ∈ ob I =⇒ F is groupoidal.

Remark A.3.7. For later use, consider the situation of an object C in C and
transformations α, β : ∆C → F . For simplicity, assume that I is a 1-category;
this will be the case of interest to us in applications. Then it is easy to verify
that the assignment i 7→ HomC (αi, βi) defines a functor I → (Sets) in a natural
way. Moreover, it is then immediate from the definition of modification that the
limit lim

←−i∈I
HomC (αi, βi) of this functor is canonically identified with the set of

modifications α → β. When I is an arbitrary bicategory, one still obtains a
morphism I → (Sets) whose limit is the set of modifications α → β, but the
needed verifications require more work.

Remark A.3.8. More generally, Simpson [Si] has defined limits in n-categories
and begun a study of them.

Remark A.3.9. More generally, there is a notion of weighted limit in a bicategory.
See (A.4.5) for brief remarks and a reference.

A.4. Limits of categories. In this section we consider the important special case
of limits in (Cat).

As motivation, let us begin with a brief review of limits in (Sets). Let I be a
small 1-category and F : I → (Sets) a functor. Of course, it is well-known that
the limit of F exists. But even if we didn’t know this, we could discover the limit
in the following simple way. Let ∗ denote a singleton set, so that

S ∼= Hom(Sets)(∗, S)

for any set S. If lim
←−

F exists, then the displayed formula and the universal property
of the limit would force

lim
←−

F ∼= Hom(Sets)(∗, lim←−
F ) ∼= HomHom(I ,(Sets))(∆∗, F ).

On the other hand, we may take the right-hand side of this last display as a defini-
tion of the limit: one verifies directly that there is a canonical functorial bijection
of sets

HomHom(I ,(Sets))(∆S, F ) ∼= Hom(Sets)

(
S,HomHom(I ,(Sets))(∆∗, F )

)

for any set S; this is just the version for covariant functors of the familiar ad-
junction between forming the constant presheaf and taking global sections. Hence
HomHom(I ,(Sets))(∆∗, F ) has the universal property of the limit.

Everything generalizes to limits in (Cat) in a straightforward way. Let F : I →
(Cat) be a morphism of bicategories. We now regard ∗ as a category with a single
object and single (identity) morphism. Then for any categoryC, there is a canonical
isomorphism (not just equivalence) of categories

C ∼= Hom(Cat)(∗, C).

Hence, just as we saw for limits in (Sets), provided lim
←−

F exists, we are forced to
compute it as

(†) lim
←−

F ∼= Hom(Cat)(∗, lim←−
F ) ≈ HomHom(I ,(Cat))(∆∗, F ).
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On the other hand, one again finds that the right-hand side of (†) serves to define
the limit: there is a canonical functorial isomorphism (not just equivalence) of
categories

HomHom(I ,(Cat))(∆C,F ) ∼= Hom(Cat)

(
C,HomHom(I ,(Cat))(∆∗, F )

)

for any category C. Hence HomHom(I ,(Cat))(∆∗, F ) has the universal property of
the limit.

Remark A.4.1. For each i ∈ ob I , the projection functor

lim
←−

F = HomHom(I ,(Cat))(∆∗, F )
pri−−→ Fi

has a simple description. Indeed, let X : ∆∗ → F be a transformation. Then priX
is just the object of Fi identified with Xi : ∗ → Fi via the canonical isomorphism
Fi ∼= Hom(∗, F i).

Example A.4.2 (Fibered product of categories). Let

D

g

��

C
f

// E

be a diagram of categories and functors, say given by an (honest) functor

•

��
• // •

F // (Cat),

where we regard the source of F as a 1-category I . Then HomHom(I ,(Cat))(∆∗, F )
is isomorphic to the category whose

• objects are tuples (X,Y, Z, ϕ, ψ), where

X ∈ obC, Y ∈ obD, Z ∈ obE,

and

ϕ : fX
∼
−→ Z and ψ : gY

∼
−→ Z

are isomorphisms in E; and
• morphisms (X,Y, Z, ϕ, ψ)→ (X ′, Y ′, Z ′, ϕ′, ψ′) are triples (α, β, γ), where

α : X −→ X ′, β : Y −→ Y ′, and γ : Z −→ Z ′

are morphisms in C, D, and E, respectively, making the evident diagrams
commute.

We take the fibered product C ×E D to be the category so defined.
It is common to find C×E D defined instead as the category of triples (X,Y, ϕ),

where X ∈ obC, Y ∈ obD, and ϕ : fX
∼
−→ gY is an isomorphism in E. One readily

checks that this category is equivalent, though not in general isomorphic, to the
fibered product as we’ve defined it. In practice, we will only ever be interested in
categories up to equivalence, and we will freely use either definition.

On the other hand, since F is an honest functor, we may speak of its 1-limit
(A.3.3), that is, the 1-categorical fibered product: this is the category of pairs
X ∈ obC and Y ∈ obD for which fX = gY . It is easy to write down simple
choices of C, D, and E for which lim

←−
F and 1- lim

←−
F are not equivalent.
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Example A.4.3 (Limit indexed on a 1-category). More generally, let I be a 1-
category and F : I → (Cat) a morphism of bicategories. Then, by (†), we may
take as lim

←−
F the category of families (Xi, ϕµ)i∈ob I ,µ∈mor I , where

• for each object i in I , Xi is an object in Fi, and
• for each morphism µ : i→ j in I , ϕµ is an isomorphism (Fµ)Xi

∼
−→ Xj in

Fj,

subject to the cocycle condition

• for every composition i
µ
−→ j

ν
−→ k in I , the diagram

(
F (νµ)

)
Xi

∼can

��

ϕνµ

∼
// Xk

(Fν)(Fµ)Xi

(Fν)ϕµ

∼
// (Fν)Xj

∼ ϕν

OO

commutes in Fk.

A morphism (Xi, ϕµ) → (X ′i, ϕ
′
µ) is a family (αi)i∈ob I , with αi : Xi → X ′i a

morphism in Fi for each i, compatible with the Fµ’s and ϕµ’s.
The reader may have noticed that, for fibered products in (A.4.2), the families

we took as objects in lim
←−

F did not include any morphisms ϕ indexed by an identity
morphism in I . It is an easy exercise to verify that, under the present description
of lim←−F in the case of fibered products, any ϕ indexed by an identity morphism
must itself be an identity morphism. So the present description of lim

←−
F agrees

with that in (A.4.2) up to isomorphism (not just equivalence).

Remark A.4.4. It is a familiar fact in 1-category theory that limits in arbitrary
categories can be characterized in terms of limits in (Sets). Indeed, let F : I → C
be a functor between 1-categories. For each C ∈ ob C , let hC := HomC (C,−) be
the functor C → (Sets) corepresented by C. Then the universal property of the
limit of F can be expressed as an isomorphism

(‡) HomC (C, lim
←−

F ) ≃ lim
←−

(hC ◦ F )

functorial in C ∈ ob C ; or, more informally,

HomC

(
C, lim
←−
i∈I

Fi

)
≃ lim
←−
i∈I

HomC (C,F i).

The equivalence of the universal property formulated in (‡) with the universal prop-
erty formulated in (A.3.1) is immediate, since there is a tautological identification

lim←−(hC ◦ F ) ∼= HomHom(I ,C )(∆C,F )

amounting to nothing more than the definition of natural transformation of func-
tors.

Quite analogously, limits in bicategories can be characterized in terms of limits
in (Cat): if F : I → C is a morphism of bicategories, then the universal property
of the limit can be expressed as an equivalence of categories

HomC (C, lim
←−

F ) ≈ lim
←−

(hC ◦ F )

functorial (in the sense of bicategories) in C ∈ obC ; here hC = HomC (C,−) is the
bicategory morphism C → (Cat) corepresented by C (A.2.2). Indeed, this time the
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definitions furnish a tautological isomorphism (not just equivalence) of categories

lim
←−

(hC ◦ F ) = HomHom(I ,(Cat))(∆∗, h
C ◦ F ) ∼= HomHom(I ,C )(∆C,F ),

so that we recover the universal property of (A.3.1).

Remark A.4.5 (Weighted limits). One may take (A.4.4) as point of departure
for the notion of weighted limit in a bicategory. As we saw, the limit of F is a
representing object in C for the morphism

C opp // (Cat)

C � // HomHom(I ,(Cat))(∆∗, h
C ◦ F ).

More generally, one may replace ∆∗ in the display by an arbitrary morphism
W : I → (Cat); a W -weighted limit of F is a representing object in C for the
morphism C opp → (Cat) so obtained. See [Lack, §6] for an informal introduction,
and references therein for more details.

Remark A.4.6 (Morphisms in limits of categories). Let F : I → (Cat) be a
bicategory morphism, and let X and Y be objects in lim

←−
F . For simplicity, assume

that I is a 1-category; this will be the case of interest to us in applications. Then
by (A.3.7) and (A.4.1), we obtain a canonical identification, which we express in
informal notation,

Hom lim
←−
i∈I

Fi(X,Y ) ∼= lim
←−
i∈I

HomFi(priX, priY ).

We have assumed that I is a 1-category only so that we may apply (A.3.7); one
obtains the displayed formula for an arbitrary bicategory I as soon as one allows
(A.3.7) for arbitrary I .

Remark A.4.7. Limits of categories indexed by 1-categories were introduced in
[SGA1, VI 5.5], and studied further in [Gi], via fibered categories; see also [SGA42,
VI 6.10–.11]. Recall that if I is a 1-category, then there is a natural 2-functor

Hom(I , (Cat)) −→ Fib(I opp)

[SGA1, VI §9] which is an equivalence of 2-categories. Let F : I → (Cat) be a
bicategory morphism, and denote the corresponding fibered category over I opp by
F . In particular, ∆∗ : I → (Cat) corresponds (up to isomorphism) to I opp itself,
and we have

lim
←−

F = HomHom(I ,(Cat))(∆∗, F ) ≈ HomFib(I opp)(I
opp,F ).

The right-hand side is the notion of limit defined in [SGA1].
Limits of toposes indexed by 1-categories were first studied in [SGA42, VI §8].

In particular, (8.1.3.3) of loc. cit. discusses the general universal mapping property
of the limit in the particular context of toposes.

A.5. Limits in morphism bicategories. It is a familiar fact in 1-category theory
that if a category D contains all limits, then so does Hom(C ,D) for any category
C . More precisely, let I be a category and F : I → Hom(C ,D) a functor. Then
for each C ∈ ob C , we obtain a diagram

FC : I // D

i � // (Fi)(C).
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If lim
←−

FC exists for all C, then the assignment C 7→ lim
←−

FC defines a functor L : C →
D in a natural way, and L is a naturally a limit of F . In more informal notation,

(
lim
←−
i∈I

Fi

)
(C) = lim

←−
i∈I

(Fi)(C);

or in more informal words, limits are computed objectwise. In particular, suppose D
contains all I -indexed limits; that is, suppose lim

←−
defines a functor Hom(I ,D)→

D , right adjoint to ∆I ,D (A.2.9). Then Hom(C ,D) has all I -indexed limits, and
they are computed via the composition

(†) Hom
(
I ,Hom(C ,D)

)
∼= Hom

(
C ,Hom(I ,D)

) (lim
←−

)∗
−−−−→ Hom(C ,D).

As in previous sections, everything now generalizes to the situation of bicat-
egories. Let C , D , and I be bicategories and F : I → Hom(C ,D) a mor-
phism. Then for each C ∈ ob C , we again get a morphism FC : I → D sending
i 7→ (Fi)(C). Suppose each FC admits a limit, and fix a particular choice lim

←−
FC

for each C. Of course, this time the assignment C 7→ lim
←−

FC does not canonically
define a morphism C → D , since we only have equivalences

HomD

(
lim
←−

FC , lim←−
FC′

)
≈ lim
←−

i

HomD

(
lim
←−

FC , (Fi)(C
′)

)

for varying C, C′ ∈ obC . Nevertheless, the right-hand side of the display allows
us to choose an assignment of 1-cells

(
C

f
→ C′

)
7−→

(
lim
←−

FC

lim
←−

f

−−−→ lim
←−

FC′

)

as f runs through the 1-cells in C . It is straightforward to verify that our choices
determine a morphism L : C → D in a natural way, and moreover L is naturally
a limit of F . As in the 1-categorical case, if D has all I -indexed limits, so that
lim
←−

admits a structure of morphism Hom(I ,D) → D , then Hom(C ,D) has all

I -indexed limits; these last may be computed exactly as in (†), interpreted in the
setting of bicategories.

A.6. Limits of fibered categories and of stacks. In this section we shall apply
some of the general considerations in previous sections to the particular setting of
fibered categories and stacks. Let C be a 1-category. Strictly speaking, we shall
apply our previous work directly to Hom(C opp, (Cat)), and then to Fib(C ) via the
equivalence of 2-categories

Hom(C opp, (Cat)) −→ Fib(C )

we recalled earlier in (A.4.7).
Our first result is an immediate consequence of §§A.4 and A.5.

Theorem A.6.1. Fib(C ) contains all limits. �

Remark A.6.2. Quite explicitly, let F : I → Fib(C ) be a morphism of bicate-
gories, and let (Fi)(C) denote the category fiber of Fi over each C ∈ obC . Then
lim
←−

F is the fibered category whose fiber over each C is the category lim
←−i∈I

(Fi)(C).

In other words, limits of fibered categories are computed fiberwise.
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Of course, (A.6.1) is a generalization of the familiar fact that for any category
C , the category of presheaves of sets on C contains all (small) limits.

In the case of a diagram of CFG’s in Fib(C ), (A.3.6) asserts that the limit will
again be a CFG. So we deduce the following.

Corollary A.6.3. CFG(C ) contains all limits; they are computed exactly as limits
in Fib(C ). �

Let us now turn to stacks. We continue with our 1-category C , and suppose it
equipped with a Grothendieck topology; we shall not consider here Grothendieck
topologies on arbitrary bicategories. It is a familiar fact in sheaf theory that a limit
of sheaves (of sets, say), computed in the category of presheaves, is always again a
sheaf. We shall now arrive at the analogous result for stacks.

Let F : I → Fib(C ) be a morphism of bicategories; then lim←−F exists by (A.6.1).

Theorem A.6.4. Suppose Fi is a stack for each i ∈ obI . Then lim
←−

F is a stack.

In particular, St(C ) contains all limits.

Proof. Let C ∈ obC and U → C a covering sieve on C. We must show that the
natural functor

(†) HomFib(C )(C, lim←−
F ) −→ HomFib(C )(U, lim←−

F )

is an equivalence of categories. By (A.4.4), we may replace (†) with

(‡) lim
←−
i∈I

HomFib(C )(C,F i) −→ lim
←−
i∈I

HomFib(C )(U,F i).

Since Fi is a stack for each i ∈ obI , each Hom(C,F i)→ Hom(U,F i) is an equiv-
alence. Hence HomFib(C )(C,F−) and HomFib(C)(U,F−) are equivalent objects in
Hom(I , (Cat)) (A.2.7). Hence (‡) is an equivalence. �

A.7. Limits of objects in limits of categories; group objects. Let F : I →
(Cat) be a morphism of bicategories. By §A.4, there exists a limit category lim

←−
F .

Let now J be a 1-category and G : J → lim
←−

F a functor. In this section, we wish
to describe the limit of G in lim

←−
F in terms of limits in the categories Fi, i ∈ obI ,

under certain natural assumptions on F and G.
We shall make use below of (A.4.6). So, as in (A.4.6), we shall make the sim-

plifying assumption that I is a 1-category. Everything we shall do would work for
an arbitrary bicategory I , but we only need the 1-categorical case in applications.
We’ll leave the verifications needed for the general case to the reader.

Our assumptions on F and G are as follows. For each i ∈ ob I , let Gi denote
the composite functor

J
G
−→ lim
←−

F
pri−−→ Fi.

We shall assume

• for all objects i in I , Gi admits a limit in Fi; and
• for all morphisms µ : i → i′ in I , the functor Fµ : Fi → Fi′ sends limits

for Gi to limits for Gi′.

For each i ∈ ob I , choose a limit lim
←−

Gi of Gi in Fi. By assumption, for each

µ : i→ i′ in I , the objects (Fµ)(lim
←−

Gi) and lim
←−

Gi′ are canonically isomorphic in

Fi′. Hence the lim
←−

Gi’s determine an object L in lim
←−

F (A.4.3).

Proposition A.7.1. The object L is naturally a limit of G in lim
←−

F .
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Proof. Let X ∈ ob lim
←−

F . Then

HomHom(J ,lim
←−

F )(∆X,G) ∼= Hom lim
←−
i∈I

Hom(J ,F i)(∆X,G) (A.4.4)

∼= lim
←−
i∈I

HomHom(J ,F i)(∆priX,Gi) (A.4.6)

∼= lim
←−
i∈I

HomFi(priX, lim←−
Gi)

∼= Homlim
←−

F (X,L) (A.4.6).

Hence L has the universal property of the limit. �

As an application, let us now consider group objects in lim
←−

F . Quite generally, for

any category C , write Gp(C ) for the category of group objects and homomorphisms
in C . Let us note that there is some ambiguity as to what we really mean by this
category: namely, the products of objects in C are only defined up to canonical
isomorphism, so some care is needed in defining the objects of Gp(C ) precisely.
Nevertheless, it is clear that all reasonable notions of Gp(C ) produce equivalent
categories. So we shall regard the issue as one of pedantry and ignore it from now
on. Similarly, we write Ab(C ) for the full subcategory of Gp(C ) of commutative
group objects in C .

We continue with a 1-category I and a morphism of bicategories F : I → (Cat).
Suppose that

• for all i ∈ obI , Fi admits all finite (including empty) products; and
• for all µ ∈ morI , Fµ preserves all finite (including empty) products.

Then each Fµ : Fi → Fi′ induces Gp(Fi) → Gp(Fi′), and we obtain a morphism
of bicategories

I // (Cat)

i � // Gp(Fi).

Moreover, by (A.7.1), the projection lim
←−i′

Fi′
pri−−→ Fi induces Gp(lim

←−i′
Fi′) →

Gp(Fi) for all i ∈ ob I , and we obtain an arrow

(♯) Gp
(

lim
←−
i∈I

Fi
)
−→ lim
←−
i∈I

Gp(Fi).

Similarly, we obtain the category lim
←−i

Ab(Fi) and an arrow

(♭) Ab
(

lim
←−
i∈I

Fi
)
−→ lim
←−
i∈I

Ab(Fi).

Proposition A.7.2. The arrows (♯) and (♭) are equivalences of categories.

Proof. Immediate from (A.4.6) and (A.7.1). �

A.8. Pro-objects and limits. Let

• C be a 1-category;
• pro-C denote the category of pro-objects in C ;
• D be a bicategory; and
• F : C → D be a morphism of bicategories.
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Our goal for the section is to show that if D contains all filtered limits, then F
induces a morphism F←− : pro-C → D in a “natural” — or more precisely, in a

canonical-up-to-equivalence — way.
For convenience, let us begin by recalling some of the basic definitions involved.

A 1-category I is filtered if

(1) I is nonempty;
(2) for every i1, i2 ∈ obI , there exist i ∈ obI and morphisms

i1

i

44hhhh

**VVVV

i2;

and
(3) for every diagram

i1
//
// i2

in I , there exist i ∈ obI and an equalizing morphism

i //___ i1
//
// i2,

that is, the two compositions in this last diagram are equal.

For applications, our primary interest is in limits indexed on the filtered set N
(e.g. lim

←−n
(n-Inf) in §2.4, lim

←−n
Gn in §2.5, and lim

←−n
Bn in §2.6), where we regard N

as the category

· · · −→ 3 −→ 2 −→ 1,

with compositions and identities suppressed.

Remark A.8.1. Many authors use “filtered” in the sense dual to ours; see e.g.
[SGA41, I 2.7] or [CWM, IX §1]. In our use of the terminology, one typically
encounters filtered limits and cofiltered colimits.

A pro-object in C [SGA41, I §8.10] is a functor X : I → C defined on some
small filtered category I . We typically write Xi for Xi, i ∈ obI , and “ lim

←−
”
i∈I

Xi

for X . The pro-objects in C form a category pro-C , with morphisms defined by

Hompro-C

(
“ lim
←−

”
i∈I

Xi, “ lim
←−

”
j∈J

Yj

)
:= lim
←−
j∈J

lim
−→
i∈I

HomC (Xi, Yj).

The composition law in C induces a natural one in pro-C , well-defined, as one
readily checks, because the index categories are filtered.

For simplicity, we shall consider neither the notion of filtered nor that of pro-
object in the setting of arbitrary bicategories.

Let us now explain the construction of the morphism F←− : pro-C → D . It is useful

to first consider the case D is a 1-category. On objects, F←− sends the pro-object

X : I → C to lim
←−

(F ◦X); or, more informally,

“ lim
←−

”
i∈I

Xi

F
←−7−→ lim
←−
i∈I

FXi.

F←− is defined on morphisms in the evident way, using the universal property of the

limit. It is then easy to verify, using that I is filtered, that F←− is an honest functor.

Plainly, F←− is well-defined up to canonical isomorphism.
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In the case of a general bicategory D , essentially the same approach works, but
a bit more care must be taken in the definition of F←− on morphisms. For each pro-

object X = “ lim
←−

”
i∈I

Xi in C , we define F←−X to be any choice of limit lim
←−i∈I

FXi

in D . For each morphism of pro-objects

f = (fj)j∈ob J ∈ Hompro-C

(
“ lim
←−

”
i∈I

Xi, “ lim
←−

”
j∈J

Yj

)
= lim
←−

j∈J

lim
−→
i∈I

HomC (Xi, Yj),

for each j ∈ obJ , choose a representative f̃j : Xij
→ Yj of fj. Then we get a 1-cell

fj
←−

: lim
←−i

FXi → FYj in D by composing

lim
←−i

FXi

prij
//

fj
←−

77
FXij

F efj
// FYj .

For each ν : j1 → j2 in J , denote by ν∗ the induced morphism Yj1 → Yj2 . One
then verifies, using that I is filtered, that the diagram

lim←−i
FXi

fj1
←−

����
��

��
fj2
←−

��
==

==
==

FYj1 Fν∗

// FYj2

commutes up to canonical isomorphism. Hence, by the universal property of the
limit (A.4.3, A.4.4), we obtain a 1-cell lim

←−i
FXi → lim

←−j
FYj , which we define to be

F←−f .

Proposition A.8.2. The assignments X 7→ F←−X on objects and f 7→ F←−f on

morphisms admit a natural structure of bicategory morphism F←− : pro-C → D .

The proof is straightforward, and we shall leave the details to the reader. Of
course, the notion of filtered category plays an essential role.

It is clear that F←− is well-defined up to equivalence.

Remark A.8.3. There is a canonical functor χ : C → pro-C sending each object
C to the pro-object indexed on ∗ with value C. Moreover, one verifies easily that
pro-C contains all small filtered limits. One may now distinguish pro-C and χ
amongst the maps from C into 1-categories by the following universal mapping
property: up to isomorphism of functors, to give a functor C → D into a 1-category
D containing small filtered limits is to give a functor pro-C → D preserving small
filtered limits. Analogously, pro-C and χ enjoy a universal position amongst the
bicategories: up to equivalence of morphisms of bicategories, to give a morphism
C → D into a bicategory D containing small filtered limits is to give a morphism
pro-C → D preserving small filtered limits.

A.9. Initiality and limits. It is a standard fact in 1-category theory that lim-
its are invariant under right composition with an initial functor. Precisely, recall
[CWM, IX §3] that a functor L : J → I is initial if for all i ∈ obI , the comma
category J/i (denoted L ↓ i in the notation of [CWM]) is nonempty and connected.
If L : J → I is initial, F : I → C is any functor, and lim

←−
FL exists, then one

proves easily that lim
←−

FL is canonically a limit of F [CWM, IX 3.1].
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In this section we shall obtain a suitable generalization to the following situation:

• C is an arbitrary bicategory;
• for simplicity, I and J are 1-categories, and L : J → I is an initial

functor between them; and
• F is an arbitrary bicategory morphism I → C .

Let C ∈ ob C .

Proposition A.9.1. The natural functor

HomHom(I ,C )(∆I ,CC,F ) −→ HomHom(J ,C )(∆J ,CC,FL)

induced by L is an equivalence of categories.

Sketch proof. The proof is tedious but straightforward, so we’ll just give a sketch.
Let Φ denote the functor in the statement of the proposition.

One sees that Φ is faithful directly from the definition of 2-cells in morphism
bicategories and from the assumption that every comma category J/i is nonempty.

To see that Φ is full, suppose there are 1-cells

∆C F

α

$$

β

::

in Hom(I ,C ) and a 2-cell

∆C FL

Φα

%%

Φβ

99
ξ

��

in Hom(J ,C ). We must find a 2-cell ξ̃ : α→ β mapping to ξ. For each i ∈ obI ,

choose an object (j, Lj
µ
−→ i) in J/i. One then defines ξ̃i in an obvious way using

ξj and µ. One next shows that ξ̃i is independent of the choice of object in J/i, first
in the special case that two choices admit a morphism in J/i between them, and
then in general using the special case and that J/i is connected. It then follows

easily from independence of choices that the ξ̃i’s define a 2-cell ξ̃ mapping to ξ.
To see that Φ is essentially surjective, let α : ∆C → FL be a 1-cell in Hom(J ,C ).

As usual, for each i ∈ obI , choose (j, Lj
µ
−→ i) in J/i, and define α̃ to be the

composite 1-cell

C
αj

//

eαi

88FLj
Fµ

// Fi .

This time α̃i is not independent of the choice of j and µ. But using that J/i is
connected, one verifies that different choices produce canonically isomorphic α̃i’s.
So the α̃i’s define α̃ : ∆C → F in a natural way, and moreover Φα̃ ∼= α. �

Corollary A.9.2. F admits a limit ⇐⇒ FL does, and the limits are equivalent
when they exist. �
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[Bé] J. Bénabou, Introduction to bicategories, Reports of the Midwest Category Seminar,
Springer, Berlin, 1967, pp. 1–77. MR 0220789 (36 #3841)

[Bo] F. Borceux, Handbook of categorical algebra. 1, Encyclopedia of Mathematics and its
Applications, vol. 50, Cambridge University Press, Cambridge, 1994. Basic category
theory. MR 1291599 (96g:18001a)

[dJ] A. J. de Jong, Homomorphisms of Barsotti-Tate groups and crystals in positive char-
acteristic, Invent. Math. 134 (1998), no. 2, 301–333. MR 1650324 (2000f:14070a)

[SGA3I] M. Demazure and A. Grothendieck, Schémas en groupes. I: Propriétés générales des
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